Log in

Using a promising biomass-based biochar in photocatalytic degradation: highly impressive performance of RHB/SnO2/Fe3O4 for elimination of AO7

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The release of industrial dyes into the environment has recently increased, resulting in harmful effects on people and ecosystems. In recent years, the use of adsorbents in photocatalytic nanocomposites has attracted significant interest due to their low cost, efficiency, and eco-friendly physical and chemical characteristics. Herein, Acid Orange 7 (AO7) removal was investigated by photocatalytic degradation using Rice Rusk Biochar (RHB), Tin (IV) Oxide (SnO2), and Iron Oxide (Fe3O4) as heterogeneous nanocomposite. After the preparation of RHB, the nanocomposite was synthesized and characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Powder Diffraction (XRD), Brunauer–Emmett–Teller (BET), and Fourier-Transform Infrared Spectroscopy (FT-IR). To optimize the elimination of AO7 by the One-Factor-At-a-Time (OFAT) method, effective parameters including mixing ratio (RHB:SnO2:Fe3O4), dye concentration, solution pH, and nanocomposite dose were studied. The results showed that the removal efficiency of AO7 after 120 min under the optimal mixing ratio of 1:1.5:0.6, dye concentration of 75 mg/l, solution pH of 4, and nanocomposite dose of 0.7 g/l was 92.37%. Moreover, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal rates were obtained at 82.22 and 72.22%, respectively. The Average Oxidation State (AOS) and Carbon Oxidation State (COS) of the AO7 solution were increased after the process, indicating biodegradability improvement. Various scavenger effects were studied under optimal conditions, and the results revealed that O2 and H+ reactive species play a crucial role in the photocatalytic degradation of AO7. The reusability and stability of nanocomposite were tested in several consecutive experiments, and the degradation efficiency was reduced from 92 to 79% after five consecutive cycles. It is expected that this research contributes significantly to the utilization of agricultural waste in photocatalytic nanocomposites for the degradation of environmental pollutants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Xue, H., **ong, S., Mi, K., & Wang, Y. (2021). Visible-light degradation of azo dyes by imine-linked covalent organic frameworks. Green Energy & Environment. https://doi.org/10.1016/j.gee.2020.09.010

    Article  Google Scholar 

  2. Baloo, L., Isa, M. H., Sapari, N. B., Jagaba, A. H., Wei, L. J., Yavari, S., Razali, R., & Vasu, R. (2021). Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alexandria Engineering Journal, 60(6), 5611–5629. https://doi.org/10.1016/j.aej.2021.04.044

    Article  Google Scholar 

  3. Danouche, M., El Arroussi, H., Bahafid, W., & El Ghachtouli, N. (2021). An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells. Environmental Technology Reviews, 10(1), 58–76. https://doi.org/10.1080/21622515.2020.1869839

    Article  CAS  Google Scholar 

  4. Sutar, S., Patil, P., & Jadhav, J. (2022). Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environmental Research, 209, 112841. https://doi.org/10.1016/j.envres.2022.112841

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Q., Zhang, W., Hu, X., Xu, L., Chen, G., & Li, X. (2021). Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light. Journal of Water Process Engineering, 40, 101943. https://doi.org/10.1016/j.jwpe.2021.101943

    Article  Google Scholar 

  6. Berkani, M., Smaali, A., Kadmi, Y., Almomani, F., Vasseghian, Y., Lakhdari, N., & Alyane, M. (2022). Photocatalytic degradation of Penicillin G in aqueous solutions: Kinetic, degradation pathway, and microbioassays assessment. Journal of Hazardous Materials, 421, 126719. https://doi.org/10.1016/j.jhazmat.2021.126719

    Article  CAS  PubMed  Google Scholar 

  7. Hitam, C. N., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258, 110050. https://doi.org/10.1016/j.jenvman.2019.110050

    Article  CAS  PubMed  Google Scholar 

  8. Liu, N., Lu, N., Yu, H., Chen, S., & Quan, X. (2022). Enhanced degradation of organic water pollutants by photocatalytic in-situ activation of sulfate based on Z-scheme g-C3N4/BiPO4. Chemical Engineering Journal, 428, 132116. https://doi.org/10.1016/j.cej.2021.132116

    Article  CAS  Google Scholar 

  9. Pant, B., Ojha, G. P., Acharya, J., & Park, M. (2021). Ag3PO4-TiO2-carbon nanofiber composite: An efficient visible-light photocatalyst obtained from electrospinning and hydrothermal methods. Separation and Purification Technology, 276, 119400. https://doi.org/10.1016/j.seppur.2021.119400

    Article  CAS  Google Scholar 

  10. Luque, P., Nava, O., Soto-Robles, C., Chinchillas-Chinchillas, M., Garrafa-Galvez, H., Baez-Lopez, Y., Valdez-Núñez, K., Vilchis-Nestor, A., & Castro-Beltrán, A. (2020). Improved photocatalytic efficiency of SnO2 nanoparticles through green synthesis. Optik, 206, 164299. https://doi.org/10.1016/j.ijleo.2020.164299

    Article  CAS  Google Scholar 

  11. Ali Baig, A. B., Rathinam, V., & Ramya, V. (2021). Facile fabrication of Zn-doped SnO2 nanoparticles for enhanced photocatalytic dye degradation performance under visible light exposure. Advanced Composites and Hybrid Materials, 4(1), 114–126. https://doi.org/10.1007/s42114-020-00195-9

    Article  CAS  Google Scholar 

  12. Mohanta, D., & Ahmaruzzaman, M. (2021). Facile fabrication of novel Fe3O4-SnO2-gC3N4 ternary nanocomposites and their photocatalytic properties towards the degradation of carbofuran. Chemosphere, 285, 131395. https://doi.org/10.1016/j.chemosphere.2021.131395

    Article  CAS  PubMed  Google Scholar 

  13. Nazari, P., Askari, N., & Rahman Setayesh, S. (2020). Oxidation-precipitation of magnetic Fe3O4/AC nanocomposite as a heterogeneous catalyst for electro-Fenton treatment. Chemical Engineering Communication, 207(5), 665–675. https://doi.org/10.1080/00986445.2019.1613233

    Article  CAS  Google Scholar 

  14. Djellabi, R., Yang, B., Sharif, H. M. A., Zhang, J., Ali, J., & Zhao, X. (2019). Sustainable and easy recoverable magnetic TiO2-lignocellulosic biomass@ Fe3O4 for solar photocatalytic water remediation. Journal of Cleaner Production, 233, 841–847. https://doi.org/10.1016/j.jclepro.2019.06.125

    Article  CAS  Google Scholar 

  15. Torres, R., Diz, V. E., & Lagorio, M. G. (2022). Improved photosynthetic performance induced by Fe3O4 nanoparticles. Photochemical & Photobiological Sciences. https://doi.org/10.1007/s43630-022-00269-1

    Article  Google Scholar 

  16. Albadarin, A. B., Collins, M. N., Naushad, M., Shirazian, S., Walker, G., & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal, 307, 264–272. https://doi.org/10.1016/j.cej.2016.08.089

    Article  CAS  Google Scholar 

  17. Siyasukh, A., Chimupala, Y., & Tonanon, N. (2018). Preparation of magnetic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity. Carbon, 134, 207–221. https://doi.org/10.1016/j.carbon.2018.03.093

    Article  CAS  Google Scholar 

  18. Li, W., Mu, B., & Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157–170. https://doi.org/10.1016/j.biortech.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  19. Al-Musawi, T. J., Rajiv, P., Mengelizadeh, N., Mohammed, I. A., & Balarak, D. (2021). Development of sonophotocatalytic process for degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst. Journal of Environmental Management, 292, 112777. https://doi.org/10.1016/j.jenvman.2021.112777

    Article  PubMed  Google Scholar 

  20. Zeng, H., Zeng, H., Zhang, H., Shahab, A., Zhang, K., Lu, Y., Nabi, I., Naseem, F., & Ullah, H. (2021). Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. Journal of Cleaner Production, 286, 124964. https://doi.org/10.1016/j.jclepro.2021.127046

    Article  CAS  Google Scholar 

  21. Pang, Y. L., Law, Z. X., Lim, S., Chan, Y. Y., Shuit, S. H., Chong, W. C., & Lai, C. W. (2021). Enhanced photocatalytic degradation of methyl orange by coconut shell–derived biochar composites under visible LED light irradiation. Environmental Science and Pollution Research, 28(21), 27457–27473. https://doi.org/10.1007/s11356-020-12251-4

    Article  CAS  PubMed  Google Scholar 

  22. Eltaweil, A., Mohamed, H. A., Abd El-Monaem, E. M., & El-Subruiti, G. (2020). Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Advanced Powder Technology, 31(3), 1253–1263.

    Article  CAS  Google Scholar 

  23. Hossain, N., Nizamuddin, S., Griffin, G., Selvakannan, P., Mubarak, N. M., & Mahlia, T. M. I. (2020). Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-75936-3

    Article  CAS  Google Scholar 

  24. Wang, A., Zheng, Z., Li, R., Hu, D., Lu, Y., Luo, H., & Yan, K. (2019). Biomass-derived porous carbon highly efficient for removal of Pb (II) and Cd (II). Green Energy & Environment, 4(4), 414–423. https://doi.org/10.1016/j.gee.2019.05.002

    Article  Google Scholar 

  25. Ahmadi, S., & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of acid blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9(5), 106010. https://doi.org/10.1016/j.jece.2021.106010

    Article  CAS  Google Scholar 

  26. Sayadi, M. H., Sobhani, S., & Shekari, H. (2019). Photocatalytic degradation of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites. Journal of Cleaner Production, 232, 127–136. https://doi.org/10.1016/j.jclepro.2019.05.338

    Article  CAS  Google Scholar 

  27. Barakat, M., Anjum, M., Kumar, R., Alafif, Z., Oves, M., & Ansari, M. O. (2020). Design of ternary Ni (OH)2/graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic, microbial contaminants, and aerobic digestion of dairy wastewater. Journal of Cleaner Production, 258, 120588. https://doi.org/10.1016/j.jclepro.2020.120588

    Article  CAS  Google Scholar 

  28. Omer, A. M., El-Monaem, A., Eman, M., El-Subruiti, G. M., El-Latif, A., Mona, M., & Eltaweil, A. S. (2021). Fabrication of easy separable and reusable MIL-125 (Ti)/MIL-53 (Fe) binary MOF/CNT/Alginate composite microbeads for tetracycline removal from water bodies. Science and Reports, 11(1), 1–14.

    Google Scholar 

  29. Eltaweil, A. S., Abdelfatah, A. M., Hosny, M., & Fawzy, M. (2022). Novel biogenic synthesis of a Ag@ Biochar nanocomposite as an antimicrobial agent and photocatalyst for methylene blue degradation. ACS Omega, 7(9), 8046–8059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hosny, M., Fawzy, M., & Eltaweil, A. S. (2022). Green synthesis of bimetallic Ag/ZnO@ Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Science and Reports, 12(1), 1–17.

    Google Scholar 

  31. Wang, D., Jiang, P., Zhang, H., & Yuan, W. (2020). Biochar production and applications in agro and forestry systems: A review. Science of The Total Environment, 723, 137775. https://doi.org/10.1016/j.scitotenv.2020.137775

    Article  CAS  PubMed  Google Scholar 

  32. Bi, Y., Sun, E., Zhang, S., Du, F., Wei, H., Liu, F., & Zhao, C. (2021). Synergistic effect of adsorption and photocatalysis for the degradation of toluene by TiO2 loaded on ACF modified by Zn (CH3COO)2. Environmental Science and Pollution Research, 28(40), 57398–57411. https://doi.org/10.1007/s11356-021-14539-5

    Article  CAS  PubMed  Google Scholar 

  33. Sannino, D., Morante, N., Sacco, O., Mancuso, A., De Guglielmo, L., Di Capua, G., Femia, N., & Vaiano, V. (2022). Visible light-driven degradation of acid orange 7 by light modulation techniques. Photochemical & Photobiological Sciences. https://doi.org/10.1007/s43630-022-00309-w

    Article  Google Scholar 

  34. TaheriAshtiani, N., & Ayati, B. (2022). Using chitosan-based heterogeneous catalyst for degradation of Acid Blue 25 in the effective electro-Fenton process with rotating cathodes. Journal of Electroanalytical Chemistry, 905, 115983. https://doi.org/10.1016/j.jelechem.2021.115983

    Article  CAS  Google Scholar 

  35. Damodar, R. A., You, S.-J., & Ou, S.-H. (2010). Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 76(1), 64–71. https://doi.org/10.1016/j.seppur.2010.09.021

    Article  CAS  Google Scholar 

  36. Xu, C., Tan, X., Zhao, J., Cao, J., Ren, M., **ao, Y., & Lin, A. (2021). Optimization of biochar production based on environmental risk and remediation performance: Take kitchen waste for example. Journal of Hazardous Materials, 416, 125785. https://doi.org/10.1016/j.jhazmat.2021.125785

    Article  CAS  PubMed  Google Scholar 

  37. Bharatiya, D., Parhi, B., & Swain, S. K. (2021). Preparation, characterization and dielectric properties of GO based ZnO embedded mixed metal oxides ternary nanostructured composites. Journal of Alloys and Compounds, 869, 159274. https://doi.org/10.1016/j.jallcom.2021.159274

    Article  CAS  Google Scholar 

  38. Al-Enizi, A. M., Naushad, M., Ala’a, H., Alshehri, S. M., Alothman, Z., & Ahamad, T. (2018). Synthesis and characterization of highly selective and sensitive Sn/SnO2/N-doped carbon nanocomposite (Sn/SnO2@NGC) for sensing toxic NH3 gas. Chemical Engineering Journal, 345, 58–66. https://doi.org/10.1016/j.cej.2018.03.138

    Article  CAS  Google Scholar 

  39. Nnadozie, E. C., & Ajibade, P. A. (2020). Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Materials Letters, 263, 127145. https://doi.org/10.1016/j.matlet.2019.127145

    Article  CAS  Google Scholar 

  40. Shakya, A., Núñez-Delgado, A., & Agarwal, T. (2019). Biochar synthesis from sweet lime peel for hexavalent chromium remediation from aqueous solution. Journal of Environmental Management, 251, 109570. https://doi.org/10.1016/j.jenvman.2019.109570

    Article  CAS  PubMed  Google Scholar 

  41. Leichtweis, J., Silvestri, S., & Carissimi, E. (2020). New composite of pecan nutshells biochar-ZnO for sequential removal of acid red 97 by adsorption and photocatalysis. Biomass and Bioenergy, 140, 105648. https://doi.org/10.1016/j.biombioe.2020.105648

    Article  CAS  Google Scholar 

  42. Andronic, L., Isac, L., Cazan, C., & Enesca, A. (2020). Simultaneous adsorption and photocatalysis processes based on ternary TiO2–CuxS–fly ash hetero-structures. Applied Sciences, 10(22), 8070. https://doi.org/10.3390/app10228070

    Article  CAS  Google Scholar 

  43. Noorimotlagh, Z., Kazeminezhad, I., Jaafarzadeh, N., Ahmadi, M., Ramezani, Z., & Martinez, S. S. (2018). The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism. Journal of Hazardous Materials, 350, 108–120. https://doi.org/10.1016/j.jhazmat.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Y., Su, P., Weathersby, D., Zhang, Q., Zheng, J., Fan, R., Zhang, J., & Dai, Q. (2020). Synthesis of γ-Fe2O3-ZnO-biochar nanocomposites for Rhodamine B removal. Applied Surface Science, 501, 144217. https://doi.org/10.1016/j.apsusc.2019.144217

    Article  CAS  Google Scholar 

  45. Bechambi, O., Sayadi, S., & Najjar, W. (2015). Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry, 32, 201–210. https://doi.org/10.1016/j.jiec.2015.08.017

    Article  CAS  Google Scholar 

  46. Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97, 111–128. https://doi.org/10.1016/j.jiec.2021.02.017

    Article  CAS  Google Scholar 

  47. Długosz, O., Staroń, A., Brzoza, P., & Banach, M. (2022). Synergistic effect of sorption and photocatalysis on the degree of dye removal in single and multicomponent systems on ZnO-SnO2. Environmental Science and Pollution Research, 29(18), 27042–27050. https://doi.org/10.1007/s11356-021-18044-7

    Article  CAS  PubMed  Google Scholar 

  48. Daneshvar, N., Aber, S., Dorraji, M. S., Khataee, A., & Rasoulifard, M. (2007). Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and Purification Technology, 58(1), 91–98. https://doi.org/10.1080/21622515.2020.1869839

    Article  CAS  Google Scholar 

  49. Liu, B., Ye, L., Wang, R., Yang, J., Zhang, Y., Guan, R., Tian, L., & Chen, X. (2018). Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Applied Materials & Interfaces, 10(4), 4001–4009. https://doi.org/10.1021/acsami.7b17503

    Article  CAS  Google Scholar 

  50. Fan, G., You, Y., Yan, Z., **a, M., Hong, L., Du, B., Luo, J., & Pang, H. (2021). Enhanced photocatalytic performance of Z-scheme N-doped Ag2CO3/GO (AGON) for microcystin-LR remediation under visible light. Journal of Water Process Engineering, 39, 101882.

    Article  Google Scholar 

  51. Singh, T., Pal, D. B., Bhatiya, A. K., Mishra, P. K., Hashem, A., Alqarawi, A. A., AbdAllah, E. F., Gupta, V. K., & Srivastava, N. (2021). Integrated process approach for degradation of p-cresol pollutant under photocatalytic reactor using activated carbon/TiO2 nanocomposite: application in wastewater treatment. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15454-5

    Article  PubMed  Google Scholar 

  52. Babu, S. G., Karthik, P., John, M. C., Lakhera, S. K., Ashokkumar, M., Khim, J., & Neppolian, B. (2019). Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO. Ultrasonics Sonochemistry, 50, 218–223. https://doi.org/10.1016/j.ultsonch.2018.09.021

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, N., Chen, H., Feng, Q., Yao, D., Chen, H., Wang, H., Zhou, Z., Li, H., Tian, Y., & Lu, X. (2017). Effect of phosphoric acid on the surface properties and Pb (II) adsorption mechanisms of hydrochars prepared from fresh banana peels. Journal of Cleaner Production, 165, 221–230. https://doi.org/10.1016/j.jclepro.2017.07.111

    Article  CAS  Google Scholar 

  54. Zahrani, A. A., & Ayati, B. (2020). Using heterogeneous Fe-ZSM-5 nanocatalyst to improve the electro Fenton process for acid blue 25 removal in a novel reactor with orbiting electrodes. Journal of Electroanalytical Chemistry, 873, 114456. https://doi.org/10.1016/j.jelechem.2020.114456

    Article  CAS  Google Scholar 

  55. Mirzaee, S. A., Jaafarzadeh, N., Jorfi, S., Gomes, H. T., & Ahmadi, M. (2018). Enhanced degradation of Bisphenol A from high saline polycarbonate plant wastewater using wet air oxidation. Process Safety and Environmental Protection, 120, 321–330. https://doi.org/10.1016/j.chemosphere.2021.131395

    Article  CAS  Google Scholar 

  56. Ghanbari, F., Moradi, M., & Manshouri, M. (2014). Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: Compared with zero valent copper. Journal of Environmental Chemical Engineering, 2(3), 1846–1851. https://doi.org/10.1016/j.jece.2014.12.018

    Article  CAS  Google Scholar 

  57. Ghalebizade, M., & Ayati, B. (2019). Acid orange 7 treatment and fate by electro-peroxone process using novel electrode arrangement. Chemosphere, 235, 1007–1014. https://doi.org/10.1016/j.chemosphere.2019.06.211

    Article  CAS  PubMed  Google Scholar 

  58. Armaković, S., Armaković, S., Finčur, N., Šibul, F., Vione, D., Šetrajčić, J., & Abramović, B. (2015). Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO2 suspension. A combined experimental and theoretical study. RSC Advances, 5(67), 54589–54604. https://doi.org/10.1039/C5RA10523D

    Article  CAS  Google Scholar 

  59. Aharoni, N., Mamane, H., Biran, D., Lakretz, A., & Ron, E. Z. (2018). Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals. Chemosphere, 199, 243–250. https://doi.org/10.1016/j.chemosphere.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  60. Khataee, A., Saadi, S., Vahid, B., Joo, S. W., & Min, B.-K. (2016). Sonocatalytic degradation of acid blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures. Ultrasonics Sonochemistry, 29, 27–38. https://doi.org/10.1016/j.ultsonch.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  61. Katsiev, K., Harrison, G., Alghamdi, H., Alsalik, Y., Wilson, A., Thornton, G., & Idriss, H. (2017). Mechanism of ethanol photooxidation on single-crystal anatase TiO2 (101). The Journal of Physical Chemistry C, 121(5), 2940–2950. https://doi.org/10.1021/acs.jpcc.6b12776

    Article  CAS  Google Scholar 

  62. Wang, F., Yang, H., & Zhang, Y. (2018). Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires. Materials Science in Semiconductor Processing, 73, 58–66. https://doi.org/10.1016/j.mssp.2017.09.029

    Article  CAS  Google Scholar 

  63. Ayala, L. I. M., Aparicio, F., Boffa, V., Magnacca, G., Carlos, L., Bosio, G. N., & Mártire, D. O. (2022). Removal of As (III) via adsorption and photocatalytic oxidation with magnetic Fe–Cu nanocomposites. Photochemical & Photobiological Sciences. https://doi.org/10.1007/s43630-022-00330-z

    Article  Google Scholar 

  64. Yao, S., Zhou, S., Wang, J., Li, W., & Li, Z. (2019). Optimizing the synthesis of SnO2/TiO2/RGO nanocomposites with excellent visible light photocatalytic and antibacterial activities. Photochemical & Photobiological Sciences, 18(12), 2989–2999. https://doi.org/10.1039/c9pp00242a

    Article  CAS  Google Scholar 

  65. Javadian, S., & Sadrpoor, S. M. (2019). Functionalized graphene oxide with core-shell of Fe3O4@ oliec acid nanospheres as a recyclable demulsifier for effective removal of emulsified oil from oily wastewater. Journal of Water Process Engineering, 32, 100961. https://doi.org/10.1016/j.jwpe.2019.100961

    Article  Google Scholar 

  66. Zhang, X., Shao, D., Lyu, W., Tan, G., & Ren, H. (2019). Utilizing discarded SiC heating rod to fabricate SiC/Sb-SnO2 anode for electrochemical oxidation of wastewater. Chemical Engineering Journal, 361, 862–873. https://doi.org/10.1016/j.cej.2018.12.085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the financial support from the M.SC. grant from Tarbiat Modares University and also, thank our colleagues who provided insight and expertise that greatly assisted the research.

Funding

This study was supported by an M.SC. grant from Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in designing the experiment, wrote, read and approved the final manuscript. Bita Ayati analyzed the data as well, Hamid Sadati performed the experiments.

Corresponding author

Correspondence to Bita Ayati.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval and consent to participate

This material is the authors' own original work, which has not been previously published elsewhere.

Consent for publication

The authors give their consent for the publication of identifiable details, which can details within the text (material) to be published in the above Journal and Article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadati, H., Ayati, B. Using a promising biomass-based biochar in photocatalytic degradation: highly impressive performance of RHB/SnO2/Fe3O4 for elimination of AO7. Photochem Photobiol Sci 22, 1445–1462 (2023). https://doi.org/10.1007/s43630-023-00389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00389-2

Keywords

Navigation