Log in

Toluidine blue O directly and photodynamically impairs the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO’s uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 μM. Additionally, TBO (40 μM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Will, Y., Shields, J. E., & Wallace, K. B. (2019). Drug-induced mitochondrial toxicity in the geriatric population: Challenges and future directions. Biology, 8(2), 1–14. https://doi.org/10.3390/biology8020032

    Article  CAS  Google Scholar 

  2. Will, Y., & Dykens, J. (2014). Mitochondrial toxicity assessment in industry-a decade of technology development and insight. Expert Opinion on Drug Metabolism and Toxicology, 10(8), 1061–1067. https://doi.org/10.1517/17425255.2014.939628

    Article  PubMed  Google Scholar 

  3. Begriche, K., Massart, J., Robin, M. A., Borgne-Sanchez, A., & Fromenty, B. (2011). Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. Journal of Hepatology, 54(4), 773–794. https://doi.org/10.1016/j.jhep.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  4. Rana, P., Aleo, M. D., Gosink, M., & Will, Y. (2019). Evaluation of in vitro mitochondrial toxicity assays and physicochemical properties for prediction of organ toxicity using 228 pharmaceutical drugs. Chemical Research in Toxicology, 32(1), 156–167.

    Article  CAS  PubMed  Google Scholar 

  5. Jaeschke, H. (2018). Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: Current understanding and future perspectives. Journal of Clinical and Translational Research, 4(1), 75–100. https://doi.org/10.18053/jctres.04.201801.005

  6. Wallace, K. B., & Starkov, A. A. (2000). Mitochondrial targets of drug toxicity. Annual Review of Pharmacology and Toxicology, 40, 353–388. https://doi.org/10.1146/annurev.pharmtox.40.1.353

    Article  CAS  PubMed  Google Scholar 

  7. Oleinick, N. L., & Evans, H. H. (1998). The photobiology of photodynamic therapy: Cellular targets and mechanisms. Radiation Research, 150(5 SUPPL.), 146–156. https://doi.org/10.2307/3579816

    Article  Google Scholar 

  8. Morgan, J., & Oseroff, A. R. (2001). Mitochondria-based photodynamic anti-cancer therapy. Advanced Drug Delivery Reviews, 49(1–2), 71–86.

    Article  CAS  PubMed  Google Scholar 

  9. Mahalingam, S. M., Ordaz, J. D., & Low, P. S. (2018). Targeting of a photosensitizer to the Mitochondrion enhances the potency of photodynamic therapy [Research-article]. ACS Omega, 3(6), 6066–6074. https://doi.org/10.1021/acsomega.8b00692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martins, W. K., Santos, N. F., de Sousa Rocha, C., Bacellar, I. O. L., Tsubone, T. M., Viotto, A. C., Matsukuma, A. Y., de P Abrantes, A. B., Siani, P., Dias, L. G., & Baptista, M. S. (2019). Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy, 15(2), 259–279. https://doi.org/10.1080/15548627.2018.1515609

    Article  CAS  PubMed  Google Scholar 

  11. Chilakamarthi, U., & Giribabu, L. (2017). Photodynamic therapy: Past, present and future. Chemical Record, 17(8), 775–802. https://doi.org/10.1002/tcr.201600121

    Article  CAS  PubMed  Google Scholar 

  12. Plotino, G., Grande, N. M., & Mercade, M. (2019). Photodynamic therapy in endodontics. International Endodontic Journal, 52(6), 760–774. https://doi.org/10.1111/iej.13057

    Article  CAS  PubMed  Google Scholar 

  13. Santos, A. F., Terra, L. F., Wailemann, R. A. M., Oliveira, T. C., Morais Gomes, V., Mineiro, M. F., Meotti, F. C., Bruni-Cardoso, A., Baptista, M. S., & Labriola, L. (2017). Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. BMC Cancer, 17(1), 1–15. https://doi.org/10.1186/s12885-017-3179-7

    Article  CAS  Google Scholar 

  14. Lu, Y., Jiao, R., Chen, X., Zhong, J., Ji, A., & Shen, P. (2008). Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell. Journal of Cellular Biochemistry, 105(6), 1451–1460. https://doi.org/10.1002/jcb.21965

    Article  CAS  PubMed  Google Scholar 

  15. Lan, M., Zhao, S., Liu, W., Lee, C. S., Zhang, W., & Wang, P. (2019). Photosensitizers for photodynamic therapy. Advanced Healthcare Materials, 8(13), 1–37. https://doi.org/10.1002/adhm.201900132

    Article  CAS  Google Scholar 

  16. Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2004). Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 1, 279–293. https://doi.org/10.1016/S1572-1000(05)00007-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oliveira, C. S., Turchiello, R., Kowaltowski, A. J., Indig, G. L., & Baptista, M. S. (2011). Major determinants of photoinduced cell death: Subcellular localization versus photosensitization efficiency. Free Radical Biology and Medicine, 51(4), 824–833. https://doi.org/10.1016/j.freeradbiomed.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  18. Ormond, A. B., & Freeman, H. S. (2013). Dye sensitizers for photodynamic therapy. Materials, 6(3), 817–840. https://doi.org/10.3390/ma6030817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Straten, D., Mashayekhi, V., Bruijn, H. S., Oliveira, S., & Robinson, D. J. (2017). Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers, 9(2), 1–54. https://doi.org/10.3390/cancers9020019

    Article  CAS  Google Scholar 

  20. Afkhami, F., Karimi, M., Bahador, A., Ahmadi, P., Pourhajibagher, M., & Chiniforush, N. (2020). Evaluation of antimicrobial photodynamic therapy with toluidine blue against Enterococcus faecalis: Laser vs LED. Photodiagnosis and Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2020.102036

    Article  PubMed  Google Scholar 

  21. Di Stasio, D., Romano, A., Russo, D., Fiori, F., Laino, L., Caponio, V. C. A., Troiano, G., Muzio, L. L., Serpico, R., & Lucchese, A. (2020). Photodynamic therapy using topical toluidine blue for the treatment of oral leukoplakia: A prospective case series. Photodiagnosis and Photodynamic Therapy, 31(June), 101888. https://doi.org/10.1016/j.pdpdt.2020.101888

    Article  CAS  PubMed  Google Scholar 

  22. Harris, F., Sayed, Z., Hussain, S., & Phoenix, D. A. (2004). An investigation into the potential of phenothiazinium-based photo-sensitisers to act as PDT agents. Photodiagnosis and Photodynamic Therapy, 1(3), 231–239. https://doi.org/10.1016/S1572-1000(04)00046-8

    Article  CAS  PubMed  Google Scholar 

  23. Parasuraman, P., Antony, A. P., Sruthil Lal, S. B., et al. (2019). Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus. Biofouling, 35, 89–103. https://doi.org/10.1080/08927014.2019.1570501

    Article  CAS  PubMed  Google Scholar 

  24. Valle, L. A., Lopes, M. M. R., Zangrando, M. S. R., Sant’Ana, A. C. P., Greghi, S. L. A., de Rezende, M. L. R., & Damante, C. A. (2019). Blue photosensitizers for aPDT eliminate Aggregatibacter actinomycetemcomitans in the absence of light: An in vitro study. Journal of Photochemistry and Photobiology B: Biology, 194, 56–60. https://doi.org/10.1016/j.jphotobiol.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  25. Souza, R. C., Junqueira, J. C., Rossoni, R. D., Pereira, C. A., Munin, E., & Jorge, A. O. C. (2010). Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers in Medical Science, 25(3), 385–389. https://doi.org/10.1007/s10103-009-0706-z

    Article  PubMed  Google Scholar 

  26. Shen, J., Liang, Q., Su, G., Zhang, Y., Wang, Z., Baudouin, C., & Labbé, A. (2019). In vitro effect of toluidine blue antimicrobial photodynamic chemotherapy on staphylococcus epidermidis and staphylococcus aureus isolated from ocular surface infection. Translational Vision Science and Technology, 8(3), 1–10. https://doi.org/10.1167/tvst.8.3.45

    Article  Google Scholar 

  27. Pinto, A. P., Rosseti, I. B., Carvalho, M. L., da Silva, B. G. M., Alberto-Silva, C., & Costa, M. S. (2018). Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis and Photodynamic Therapy, 21, 182–189. https://doi.org/10.1016/j.pdpdt.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  28. Balhaddad, A. A., AlQranei, M. S., Ibrahim, M. S., Weir, M. D., Martinho, F. C., Xu, H. H. K., & Melo, M. A. S. (2020). Light energy dose and photosensitizer concentration are determinants of effective photo-killing against caries-related biofilms. International Journal of Molecular Sciences, 21(20), 1–14. https://doi.org/10.3390/ijms21207612

    Article  Google Scholar 

  29. Park, D., Choi, E. J., Weon, K. Y., Lee, W., Lee, S. H., Choi, J. S., Park, G. H., Lee, B., Byun, M. R., Baek, K., & Choi, J. W. (2019). Non-invasive photodynamic therapy against -periodontitis-causing bacteria. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-44498-4

    Article  CAS  Google Scholar 

  30. Usacheva, M. N., Teichert, M. C., & Biel, M. A. (2001). Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers in Surgery and Medicine, 29(2), 165–173. https://doi.org/10.1002/lsm.1105

    Article  CAS  PubMed  Google Scholar 

  31. Klosowski, E. M., de Souza, B. T. L., Mito, M. S., Constantin, R. P., Mantovanelli, G. C., Mewes, J. M., Bizerra, P. F. V., da Menezes, P. V. M., Coasta Menezes, Gilglioni, E. H., Utsunomiya, K. S., Marchiosi, R., dos Santos, W. D., Filho, O. F., Caetano, W., de Souza Pereira, P. C., Gonçalves, R. S., Constantin, J., Ishii-Iwamoto, E. L., & Constantin, R. P. (2020). The photodynamic and direct actions of methylene blue on mitochondrial energy metabolism: A balance of the useful and harmful effects of this photosensitizer. Free Radical Biology and Medicine, 153(January), 34–53. https://doi.org/10.1016/j.freeradbiomed.2020.04.015

    Article  CAS  PubMed  Google Scholar 

  32. de Souza, B. T. L., Klosowski, E. M., Mito, M. S., Constantin, R. P., Mantovanelli, G. C., Mewes, J. M., Bizerra, P. F. V., da Silva, F. S. I., da Costa Menezes, P. V. M., Gilglioni, E. H., Utsunomiya, K. S., Marchiosi, R., dos Santos, W. D., Ferrarese-Filho, O., Caetano, W., de Souza Pereira, P. C., Gonçalves, R. S., Constantin, J., Ishii-Iwamoto, E. L., & Constantin, R. P. (2021). The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology. https://doi.org/10.1016/j.tox.2021.152766

    Article  PubMed  Google Scholar 

  33. Raimundo, A. F. G., dos Santos, K. B. P., Klosowski, E. M., de Souza, B. T. L., Mito, M. S., Constantin, R. P., Mantovanelli, G. C., Mewes, J. M., Bizerra, P. F. V., da Menezes, P. V. M., Costa, Utsunomiya, K. S., Gilglioni, E. H., Marchiosi, R., dos Dantas Santos, W. D., Ferrarese-Filho, O., Caetano, W., de Souza Pereira, P. C., Gonçalves, R. S., … Constantin, R. P. (2021). The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism. Photodiagnosis and Photodynamic Therapy, 35(April), 102446. https://doi.org/10.1016/j.pdpdt.2021.10244

    Article  CAS  PubMed  Google Scholar 

  34. Chakrabortty, S., Agrawalla, B. K., Stumper, A., Vegi, N. M., Fischer, S., Reichardt, C., Kögler, M., Dietzek, B., Feuring-Buske, M., Buske, C., Rau, S., & Weil, T. (2017). Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. Journal of the American Chemical Society, 139(6), 2512–2519. https://doi.org/10.1021/jacs.6b13399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramachandran, A., Duan, L., Akakpo, J.Y., & Jaeschke, H. (2018). Mitochondrial dysfunction as a mechanism of drug induced hepatotoxicity: current understanding and future perspectives. Journal of Clinical and Translational Research, 4(1), 75–100. https://doi.org/10.18053/jctres.04.201801.005

  36. Du, K., Ramachandran, A., & Jaeschke, H. (2016). Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biology, 10(September), 148–156. https://doi.org/10.1016/j.redox.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Degli Esposti, D., Hamelin, J., Bosselut, N., Saffroy, R., Sebagh, M., Pommier, A., Martel, C., & Lemoine, A. (2012). Mitochondrial roles and cytoprotection in chronic liver injury. Biochemistry Research International. https://doi.org/10.1155/2012/387626

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scholz, R., & Bücher, T. (1965). Hemoglobin-free perfusion of rat liver. In B. Changce, W. Estabrook, & J. R. Williamson (Eds.), Control of Energy Metabolism (pp. 393–414). New York: Academic Press.

    Chapter  Google Scholar 

  39. Voss, D., Campello, A. P., & Bacila, M. (1961). The respiratory chain and the oxidative phosphorylation of rat brain mitochondria. Biochemical and Biophysical Research Communications, 4, 48–51. https://doi.org/10.1016/0006-291x(61)90253-4

    Article  CAS  PubMed  Google Scholar 

  40. Bracht, A., Ishii-Iwamoto, E. L. & Salgueiro-Pagadigorria, C. L. (2003). O estudo do metabolismo energético em mitocôndrias isoladas de tecido animal. In: A. Bracht & E. L. Ishii-Iwamoto (Eds.), Métodos de Laboratório em Bioquímica, Manole Ltda. (1st ed., pp. 227–247).

  41. Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    Article  CAS  PubMed  Google Scholar 

  42. Bolton, J. R., Mayor-Smith, I., & Linden, K. G. (2015). Rethinking the concepts of fluence (UV Dose) and fluence rate: The importance of photon-based units—A systemic review. Photochemistry and Photobiology, 91(6), 1252–1262. https://doi.org/10.1111/php.12512

    Article  CAS  PubMed  Google Scholar 

  43. Salla, G. B. F., Bracht, L., de Sá-Nakanishi, A. B., Parizotto, A. V., Bracht, F., Peralta, R. M., & Bracht, A. (2017). Distribution, lipid-bilayer affinity and kinetics of the metabolic effects of dinoseb in the liver. Toxicology and Applied Pharmacology, 329, 259–271. https://doi.org/10.1016/j.taap.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  44. Guarnier, F. A., Cecchini, A. L., Suzukawa, A. A., Maragno, A. L. G. C., Simão, A. N. C., Gomes, M. D., & Cecchini, R. (2010). Time course of skeletal muscle loss and oxidative stress in rats with walker 256 solid tumor. Muscle & Nerve, 42(6), 950–958. https://doi.org/10.1002/mus.21798

    Article  CAS  Google Scholar 

  45. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  46. Hissin, P. J., & Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analytical Biochemistry, 74(1), 214–226. https://doi.org/10.1016/0003-2697(76)90326-2

    Article  CAS  PubMed  Google Scholar 

  47. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  48. Clark, L. C., Jr. (1956). Monitor and control of blood and tissue oxygen tensions. ASAIO Journal, 2(1), 41–48.

    Google Scholar 

  49. Chance, B., & Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation. Advances in Enzymology and Related Areas of Molecular Biology, 17, 65–134. https://doi.org/10.1002/9780470122624.ch2

    Article  CAS  Google Scholar 

  50. Singer, T. P. (1974). Determination of the activity of succinate, NADH, choline, and α-glycerophosphate dehydrogenases. Methods of Biochemical Analysis, 22, 123–175. https://doi.org/10.1002/9780470110423.ch3

    Article  CAS  PubMed  Google Scholar 

  51. Pullman, M. E., Penefsky, H. S., Datta, A., & Racker, E. (1960). Partial resolution of the enzymes catalyzing oxidative phosphorylation I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase. Journal of Biological Chemistry, 235(11), 3322–3329.

    Article  CAS  PubMed  Google Scholar 

  52. Fiske, C. H., & Subarrow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66(2), 375–400.

    Article  CAS  Google Scholar 

  53. Lanza, I. R., & Nair, K. S. (2009). Functional assessment of isolated mitochondria in vitro. Methods in Enzymology, 457, 349–372. https://doi.org/10.1016/S0076-6879(09)05020-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gabrielli, D., Belisle, E., Severino, D., Kowaltowski, A. J., & Baptista, M. S. (2004). Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochemistry and Photobiology, 79(3), 227–232. https://doi.org/10.1562/be-03-27.1

    Article  CAS  PubMed  Google Scholar 

  55. Colturato, C. P., Constantin, R. P., Maeda, A. S., Jr., Constantin, R. P., Yamamoto, N. S., Bracht, A., Ishii-Iwamoto, E. L., & Constantin, J. (2012). Metabolic effects of silibinin in the rat liver. Chemico-Biological Interactions. https://doi.org/10.1016/j.cbi.2011.11.006

    Article  PubMed  Google Scholar 

  56. Bracht, A., Ishii-Iwamoto, E. L. & Kelmer-Bracht, A. M. (2003). O estudo do metabolismo no fígado em perfusão. In: A. Bracht & E. L. Ishii-Iwamoto (Eds.), Métodos de Laboratório em Bioquímica. Manole Ltda (1st ed., pp. 275–289)

  57. Bergmeyer, H. U. (1974). Methods of enzymatic analysis. London: Academic Press.

    Google Scholar 

  58. Shimojo, N., Naka, K., Nakajima, C., Yoshikawa, C., Okuda, K., & Okada, K. (1989). Test-strip method for measuring lactate in whole blood. Clinical Chemistry, 35(9), 1992–1994.

    Article  CAS  PubMed  Google Scholar 

  59. Mihara, K., & Sato, R. (1972). Partial purification of NADH-cytochrome b5 reductase from rabbit liver microsomes with detergents and its properties. Journal of Biochemistry, 71(4), 725–735.

    CAS  PubMed  Google Scholar 

  60. Groot, H. D., Noll, T., & Sies, H. (1985). Oxygen dependence and subcellular partitioning of hepatic menadione-mediated oxygen uptake: Studies with isolated hepatocytes, mitochondria, and microsomes from rat liver in an oxystat system. Archives of Biochemistry and Biophysics, 243(2), 556–562. https://doi.org/10.1016/0003-9861(85)90532-6

    Article  PubMed  Google Scholar 

  61. Eler, G. J., Peralta, R. M., & Bracht, A. (2009). The action of n-propyl gallate on gluconeogenesis and oxygen uptake in the rat liver. Chemico-Biological Interactions, 181(3), 390–399. https://doi.org/10.1016/j.cbi.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  62. da Silva Simões, M., Bracht, L., Parizotto, A. V., Comar, J. F., Peralta, R. M., & Bracht, A. (2017). The metabolic effects of diuron in the rat liver. Environmental Toxicology and Pharmacology, 54(June), 53–61. https://doi.org/10.1016/j.etap.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  63. Saling, S. C., Comar, J. F., Mito, M. S., Peralta, R. M., & Bracht, A. (2011). Actions of juglone on energy metabolism in the rat liver. Toxicology and Applied Pharmacology, 257(3), 319–327. https://doi.org/10.1016/j.taap.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  64. Mito, M. S., Constantin, J., De Castro, C. V., Yamamoto, N. S., & Bracht, A. (2010). Effects of ranolazine on fatty acid transformation in the isolated perfused rat liver. Molecular and Cellular Biochemistry, 345(1–2), 35–44. https://doi.org/10.1007/s11010-010-0557-8

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt, T. F., Caseli, L., Oliveira, O. N., & Itri, R. (2015). Binding of methylene blue onto Langmuir monolayers representing cell membranes may explain its efficiency as photosensitizer in photodynamic therapy. Langmuir, 31(14), 4205–4212.

    Article  CAS  PubMed  Google Scholar 

  66. Ercan, N. I., Stroeve, P., Tringe, J. W., & Faller, R. (2018). Molecular dynamics modeling of methylene blue− DOPC lipid bilayer interactions. Langmuir, 34(14), 4314–4323. https://doi.org/10.1021/acs.langmuir.8b00372

    Article  CAS  Google Scholar 

  67. Schneider, J. M., & Younes, A. (1989). Binding of bepridil to isolated rat heart mitochondria. Basic Research in Cardiology, 84(6), 623–630. https://doi.org/10.1007/BF01906947

    Article  CAS  PubMed  Google Scholar 

  68. Tardivo, J. P., Del Giglio, A., Oliveira, C. S., Gabrielli, D. S., Junqueira, H. C., Tada, D. B., Severino, D., Fátima Turchiello, R., & Baptista, M. S. (2005). Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy, 2(3), 175–191. https://doi.org/10.1016/S1572-1000(05)00097-9

    Article  CAS  PubMed  Google Scholar 

  69. Cwiklik, L., & Jungwirth, P. (2010). Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chemical Physics Letters, 486(4–6), 99–103. https://doi.org/10.1016/j.cplett.2010.01.010

    Article  CAS  Google Scholar 

  70. Itri, R., Junqueira, H. C., Mertins, O., & Baptista, M. S. (2014). Membrane changes under oxidative stress: The impact of oxidized lipids. Biophysical Reviews, 6(1), 47–61. https://doi.org/10.1007/s12551-013-0128-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Caetano, W., Haddad, P. S., Itri, R., Severino, D., Vieira, V. C., Baptista, M. S., Schröder, A. P., & Marques, C. M. (2007). Photo-induced destruction of giant vesicles in methylene blue solutions. Langmuir, 23(3), 1307–1314. https://doi.org/10.1021/la061510v

    Article  CAS  PubMed  Google Scholar 

  72. Kotova, E. A., Kuzevanov, A. V., Pashkovskaya, A. A., & Antonenko, Y. N. (2011). Selective permeabilization of lipid membranes by photodynamic action via formation of hydrophobic defects or pre-pores. Biochimica et Biophysica Acta - Biomembranes, 1808(9), 2252–2257. https://doi.org/10.1016/j.bbamem.2011.05.018

    Article  CAS  Google Scholar 

  73. Almeida, A. M., Oliveira, O. N., & Aoki, P. H. B. (2019). Role of toluidine blue-o binding mechanism for photooxidation in bioinspired bacterial membranes. Langmuir, 35(51), 16745–16751. https://doi.org/10.1021/acs.langmuir.9b03045

    Article  CAS  PubMed  Google Scholar 

  74. Chatterjee, S. R., Srivastava, T. S., Kamat, J. P., & Devasagayam, T. P. A. (1997). Lipid peroxidation induced by a novel porphyrin plus light in isolated mitochondria: Possible implications in photodynamic therapy. Molecular and Cellular Biochemistry, 166(1–2), 25–33. https://doi.org/10.1023/A:1006840714583

    Article  CAS  PubMed  Google Scholar 

  75. Chatterjee, S. R., Shetty, S. J., Srivastava, T. S., & Devasagayam, T. P. (1997). Oxidative damage induced by a novel porphyrin on rat brain mitochondria and its possible implications in therapy. Redox Report, 3(3), 183–188. https://doi.org/10.1080/13510002.1997.11747107

    Article  CAS  PubMed  Google Scholar 

  76. Girotti, A. W. (1990). Photodynamic lipid peroxidation in biological systems. Photochemistry and Photobiology, 51(4), 497–509. https://doi.org/10.1111/j.1751-1097.1990.tb01744.x

    Article  CAS  PubMed  Google Scholar 

  77. Fedorova, M., Bollineni, R. C., & Hoffmann, R. (2014). Protein carbonylation as a major hallmark of oxidative damage: Update of analytical strategies. Mass Spectrometry Reviews, 33(2), 79–97.

    Article  CAS  PubMed  Google Scholar 

  78. Stadtman, E. R., & Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3–4), 207–218. https://doi.org/10.1007/s00726-003-0011-2

    Article  CAS  PubMed  Google Scholar 

  79. Gonos, E. S., Kapetanou, M., Sereikaite, J., Bartosz, G., Naparlo, K., Grzesik, M. & Sadowska-Bartosz, I. (2018). Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging, 10(5), 868–901. https://doi.org/10.18632/aging.101450

  80. Keller, M. A., Piedrafita, G., & Ralser, M. (2015). The widespread role of non-enzymatic reactions in cellular metabolism. Current Opinion in Biotechnology, 34, 153–161. https://doi.org/10.1016/j.copbio.2014.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kwiecien, S., Jasnos, K., Magierowski, M., Sliwowski, Z., Pajdo, R., Brzozowski, B., Mach, T., Wojcik, D., & Brzozowski, T. (2014). Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress—induced gastric injury. Journal of Physiology and Pharmacology, 65(5), 613–622.

    CAS  PubMed  Google Scholar 

  82. Patlevič, P., Vašková, J., Švorc, P., Vaško, L., & Švorc, P. (2016). Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integrative Medicine Research, 5(4), 250–258. https://doi.org/10.1016/j.imr.2016.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  83. Theodossiou, T. A., Olsen, C. E., Jonsson, M., Kubin, A., Hothersall, J. S., & Berg, K. (2017). The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy. Redox Biology, 12, 191–197. https://doi.org/10.1016/j.redox.2017.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu, J., Wang, T., Zhou, L., & Wei, S. (2020). A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition. Journal of Photochemistry & Photobiology, B: Biology. https://doi.org/10.1016/j.matdes.2019.108334

    Article  Google Scholar 

  85. Zhang, W., Lu, J., Gao, X., Li, P., Zhang, W., Ma, Y., Wang, H., & Tang, B. (2018). Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with cuii as the active center. Angewandte Chemie—International Edition, 57(18), 4891–4896. https://doi.org/10.1002/anie.201710800

    Article  CAS  PubMed  Google Scholar 

  86. Salgueiro-Pagadigorria, C. L., Kelmer-Bracht, A. M., Bracht, A., & Ishii-Iwamoto, E. L. (1996). Effects of the nonsteroidal anti-inflammatory drug piroxicam on rat liver mitochondria. Comparative Biochemistry and Physiology—C Pharmacology Toxicology and Endocrinology, 113(1), 85–91. https://doi.org/10.1016/0742-8413(95)02041-1

    Article  CAS  Google Scholar 

  87. Pivato, L. S., Constantin, R. P., Ishii-Iwamoto, E. L., Kelmer-Bracht, A. M., Yamamoto, N. S., Constantin, J., & Bracht, A. (2006). Metabolic effects of carbenoxolone in rat liver. Journal of Biochemical and Molecular Toxicology. https://doi.org/10.1002/jbt.20139

    Article  PubMed  Google Scholar 

  88. Shinohara, Y., Bandou, S., Kora, S., Kitamura, S., Inazumi, S., & Terada, H. (1998). Cationic uncouplers of oxidative phosphorylation are inducers of mitochondrial permeability transition. FEBS Letters, 428(1–2), 89–92. https://doi.org/10.1016/S0014-5793(98)00499-289

    Article  CAS  PubMed  Google Scholar 

  89. McLaughlin, S. G., & Dilger, J. P. (1980). Transport of protons across membranes by weak acids. Physiological Reviews, 60(3), 825–863. https://doi.org/10.1152/physrev.1980.60.3.825

    Article  CAS  PubMed  Google Scholar 

  90. Robinson-Duggon, J., Pizarro, N., Gunther, G., Zúñiga-Núñez, D., Edwards, A. M., Greer, A., & Fuentealba, D. (2021). Fatty acid conjugates of toluidine blue o as amphiphilic photosensitizers: Synthesis, solubility, photophysics and photochemical properties. Photochemistry and Photobiology, 97(1), 71–79. https://doi.org/10.1111/php.13304

    Article  CAS  PubMed  Google Scholar 

  91. Atamna, H., Mackey, J., & Dhahbi, J. M. (2012). Mitochondrial pharmacology: Electron transport chain bypass as strategies to treat mitochondrial dysfunction. BioFactors, 38(2), 158–166. https://doi.org/10.1002/biof.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Poteet, E., Winters, A., Yan, L. J., Shufelt, K., Green, K. N., Simpkins, J. W., Wen, Y., & Yang, S. H. (2012). Neuroprotective actions of methylene blue and its derivatives. PLoS ONE. https://doi.org/10.1371/journal.pone.0048279

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lee, K. K., & Boelsterli, U. A. (2014). Bypassing the compromised mitochondrial electron transport with methylene blue alleviates efavirenz/isoniazid-induced oxidant stress and mitochondria-mediated cell death in mouse hepatocytes. Redox Biology, 2, 599–609. https://doi.org/10.1016/j.redox.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Choudhury, G. R., Winters, A., Rich, R. M., Ryou, M. G., Gryczynski, Z., Yuan, F., Yang, S. H., & Liu, R. (2015). Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration. PLoS ONE, 10(4), 1–14.

    Google Scholar 

  95. Sevcík, P., & Dunford, H. B. (1991). Kinetics of the oxidation of NADH by methylene blue in a closed system. Journal of Physical Chemistry, 95(6), 2411–2415. https://doi.org/10.1021/j100159a054

    Article  Google Scholar 

  96. Engbersen, J. F. J., Koudijs, A., & van der Plas, H. C. (1985). Reaction of NADH models with methylene blue. Recueil Des Travaux Chimiques Des Pays-Bas, 104(5), 131–138. https://doi.org/10.1002/recl.19851040503

    Article  CAS  Google Scholar 

  97. Acco, A., Comar, J. F., & Bracht, A. (2004). Metabolic effects of propofol in the isolated perfused rat liver. Pharmacology & Toxicology, 95(4), 166–174. https://doi.org/10.1002/cbf.290070405

    Article  CAS  Google Scholar 

  98. De Souza, A. S., Pagadigorria, C. L. S., Ishii-Iwamoto, E. L., Bracht, A., Cortez, D. A. G., & Yamamoto, N. S. (2009). Effects of the Arrabidaea chica extract on energy metabolism in the rat liver. Pharmaceutical Biology, 47(2), 154–161. https://doi.org/10.1080/13880200802436281

    Article  CAS  Google Scholar 

  99. Marek, C. B., Peralta, R. M., Itinose, A. M., & Bracht, A. (2011). Influence of tamoxifen on gluconeogenesis and glycolysis in the perfused rat liver. Chemico-Biological Interactions, 193(1), 22–33. https://doi.org/10.1016/j.cbi.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  100. Scholz, R., Hansen, W., & Thurman, R. G. (1973). Interaction of mixed-function oxidation with biosynthetic processes: Inhibition of gluconeogenesis by aminopyrine in perfused rat liver. European Journal of Biochemistry, 38(1), 64–72. https://doi.org/10.1111/j.1432-1033.1973.tb03034.x

    Article  CAS  PubMed  Google Scholar 

  101. Maldonado, M. R., Bracht, L., de Sá-Nakanishi, A. B., Corrêa, R. C. G., Comar, J. F., Peralta, R. M., & Bracht, A. (2018). Actions of p-synephrine on hepatic enzyme activities linked to carbohydrate metabolism and ATP levels in vivo and in the perfused rat liver. Cell Biochemistry and Function, 36(1), 4–12. https://doi.org/10.1002/cbf.3311

    Article  CAS  PubMed  Google Scholar 

  102. Yamano, K., Yamamoto, K., Katashima, M., Kotaki, H., Takedomi, S., Matsuo, H., Ohtani, H., Sawada, Y., & Iga, T. (2001). Prediction of midazolam—cyp3a inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data. Drug Metabolism and Disposition, 29(4), 443–452.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Emy Luiza Ishii-Iwamoto, Rogério Marchiosi, Osvaldo Ferrarese-Filho, and Wanderley Dantas dos Santos are research fellows of the National Council for Scientific and Technological Development (CNPq). This study was financed in part by the Coordination of Enhancement of Higher Education Personal (CAPES)—Finance Code 001. The authors would like to express their gratitude for the technical assistance of Aparecida Pinto Munhos Hermoso and Célia Akemi Gasparetto. We also gratefully acknowledge the instrumental research facilities provided by the Complexo de Centrais de Apoio à Pesquisa (COMCAP) at the State University of Maringá (UEM).

Funding

This study was supported by grants from the National Council for Scientific and Technological Development (CNPq), Araucaria Foundation (FA), and Coordination for the Improvement of Higher Education Personnel (CAPES). The sponsors had no involvement in the study design, research execution, results interpretation, report writing, or the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

KBPdS: Investigation and Data Curation; AFGR: Investigation and Data Curation; EMK: Investigation; BTLdS: Investigation; MSM: Investigation; RPC: Investigation; GCM: Investigation; JMM: Investigation; PFVB: Investigation; PVMdCM: Investigation; KSU: Formal analysis; EHG: Formal analysis; RM: Methodology, Formal analysis, Resources, and Writing—Review & Editing; WDdS: Methodology, Formal analysis, and Resources; OFF: Methodology, Formal analysis, and Resources; WC: Conceptualization, Resources and Methodology; PCdSP: Investigation and Methodology; RSG: Investigation and Methodology; JC: Methodology, Formal analysis, and Resources; ELII: Funding acquisition, Conceptualization, Writing—Review & Editing; RPC: Conceptualization, Data curation, Writing—Original Draft, Project administration.

Corresponding author

Correspondence to Rodrigo Polimeni Constantin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the study reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, K.B.P., Raimundo, A.F.G., Klosowski, E.M. et al. Toluidine blue O directly and photodynamically impairs the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Photochem Photobiol Sci 22, 279–302 (2023). https://doi.org/10.1007/s43630-022-00312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00312-1

Keywords

Navigation