Log in

Radiationless deactivation pathways versus H-atom elimination from the N–H bond photodissociation in PhNH2-(Py)n (n = 1,2) complexes

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Minimum energy structures of the ground and lowest excited states of aniline (PhNH2) solvated by pyridine (Py) show that the clusters formed are stabilized by hydrogen bonds in which only one or both hydrogen atoms of the NH2 group take part. Two different N–H bonds photodissociation in PhNH2-(Py)n (n = 1,2) complexes, free and hydrogen bonded have been studied by analyzing excited state potential energy surfaces. In the first one, only N–H bonds engaged in hydrogen bonding in these complexes are considered. RICC2 calculations of potential energy (PE) profiles indicate that all photochemical reaction paths along N–H stretching occur mainly via the proton-coupled electron transfer (PCET) mechanism. The repulsive charge transfer 1ππ*(CT) state dominates the PE profiles, leading to low-lying 1ππ*(CT)/S0 conical intersections and thus provide channels for ultrafast radiationless deactivation of the electronic excitation or stabilization to biradical complexes. The second photoreaction consists of a direct dissociation along the free N–H bond of the NH2 group. It has been shown that this process is played by excited singlet states of 1πσ* character having repulsive potential energy profiles with respect to the stretching of N–H bond, which dissociates over an exit barrier about 0.5 eV giving rise to the formation of a 1πσ*/S0 conical intersection. This may cause an internal conversion to the ground state or may lead to H-atom elimination. This photophysical process is the same in both planar and T-shaped conformers of the PhNH2-Py monomer complex. Our findings reveal that there is no single dominating path in the photodissociation of N–H bonds in PhNH2-(Py)n complexes, but rather a variety of paths involving H-atom elimination and several quenching mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. King, G. A., Oliver, T. A. A., & Ashfold, M. N. R. (2010). Dynamical insights into 1πσ* state mediated photodissociation of aniline. Journal of Chemical Physics, 132(21), 214307. https://doi.org/10.1063/1.3427544

    Article  CAS  Google Scholar 

  2. Schultz, T., Samoylova, E., Radloff, W., Hertel, I. V., Sobolewski, A. L., & Domcke, W. (2004). Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science, 306(5702), 1765–1768. https://doi.org/10.1126/science.1104038

    Article  CAS  Google Scholar 

  3. Sobolewski, A. L., Domcke, W., Dedonder-Lardeux, C., & Jouvet, C. (2002). Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules. Physical Chemistry Chemical Physics, 4(7), 1093–1100. https://doi.org/10.1039/b110941n

    Article  CAS  Google Scholar 

  4. Ebata, T., Minejima, C., & Mikami, N. (2002). A new electronic state of aniline observed in the transient IR absorption spectrum from S1 in a supersonic jet. Journal of Physical Chemistry A, 106(46), 11070–11074. https://doi.org/10.1021/jp021457t

    Article  CAS  Google Scholar 

  5. Spesyvtsev, R., Kirkby, O. M., & Fielding, H. H. (2012). Ultrafast dynamics of aniline following 269–238 nm excitation and the role of the S2(π3s/πσ*) state. Faraday Discussions, 157, 165–179. https://doi.org/10.1039/c2fd20076g

    Article  CAS  Google Scholar 

  6. Spesyvtsev, R., Kirkby, O. M., Vacher, M., & Fielding, H. H. (2012). Shedding new light on the role of the Rydberg state in the photochemistry of aniline. Physical Chemistry Chemical Physics, 14(28), 9942–9947. https://doi.org/10.1039/c2cp41785e

    Article  CAS  Google Scholar 

  7. Roberts, G. M., Williams, C. A., Young, J. D., Ullrich, S., Paterson, M. J., & Stavros, V. G. (2012). Unraveling ultrafast dynamics in photoexcited aniline. Journal of the American Chemical Society, 134(30), 12578–12589. https://doi.org/10.1021/ja3029729

    Article  CAS  Google Scholar 

  8. Montero, R., Conde, L. P., Ovejas, V., Martnez, R., Castao, F., & Longarte, A. (2011). Ultrafast dynamics of aniline in the 294–234 nm excitation range: the role of the π σ* state. Journal of Chemical Physics, 135(5), 054308. https://doi.org/10.1063/1.3615544

    Article  CAS  Google Scholar 

  9. Rajasekhar, B. N., Veeraiah, A., Sunanda, K., & Jagatap, B. N. (2013). Excited states of aniline by photoabsorption spectroscopy in the 30 000–90 000 cm-1 region using synchrotron radiation. Journal of Chemical Physics, 139(6), 064303. https://doi.org/10.1063/1.4817206

    Article  CAS  Google Scholar 

  10. Thompson, J. O. F., Livingstone, R. A., & Townsend, D. (2013). Following the relaxation dynamics of photoexcited aniline in the 273–266 nm region using time-resolved photoelectron imaging. Journal of Chemical Physics. https://doi.org/10.1063/1.4813005

    Article  Google Scholar 

  11. Roberts, G. M., & Stavros, V. G. (2014). The role of πσ* states in the photochemistry of heteroaromatic biomolecules and their subunits: Insights from gas-phase femtosecond spectroscopy. Chemical Science, 5(5), 1698–1722. https://doi.org/10.1039/c3sc53175a

    Article  CAS  Google Scholar 

  12. Thompson, J. O., Saalbach, L., Crane, S. W., Paterson, M. J., & Townsend, D. (2015). Ultraviolet relaxation dynamics of aniline, N, N -dimethylaniline and 3,5-dimethylaniline at 250 nm. Journal of Chemical Physics, 142(11), 03B612_1. https://doi.org/10.1063/1.4914330

    Article  CAS  Google Scholar 

  13. Kirkby, O. M., Sala, M., Balerdi, G., De Nalda, R., Bañares, L., Guérin, S., & Fielding, H. H. (2015). Comparing the electronic relaxation dynamics of aniline and d7-aniline following excitation at 272–238 nm. Physical Chemistry Chemical Physics, 17(25), 16270–16276. https://doi.org/10.1039/C5CP01883H

    Article  CAS  Google Scholar 

  14. Cole-Filipiak, N. C., & Stavros, V. G. (2019). New insights into the dissociation dynamics of methylated anilines. Physical Chemistry Chemical Physics, 21(26), 14394–14406. https://doi.org/10.1039/C8CP07061J

    Article  CAS  Google Scholar 

  15. Poterya, V., Nachtigallová, D., Lengyel, J., & Fárník, M. (2015). Photodissociation of aniline N-H bonds in clusters of different nature. Physical Chemistry Chemical Physics, 17(38), 25004–25013. https://doi.org/10.1039/C5CP04485E

    Article  CAS  Google Scholar 

  16. Zawadzki, M. M., Candelaresi, M., Saalbach, L., Crane, S. W., Paterson, M. J., & Townsend, D. (2016). Observation of multi-channel non-adiabatic dynamics in aniline derivatives using time-resolved photoelectron imaging. Faraday Discussions, 194, 185–208. https://doi.org/10.1039/C6FD00092D

    Article  CAS  Google Scholar 

  17. Paterson, M. J., & Townsend, D. (2020). Rydberg-to-valence evolution in excited state molecular dynamics. International Reviews in Physical Chemistry, 39(4), 517–567. https://doi.org/10.1080/0144235X.2020.1815389

    Article  CAS  Google Scholar 

  18. Honda, Y., Hada, M., Ehara, M., & Nakatsuji, H. (2002). Excited and ionized states of aniline: Symmetry adapted cluster configuration interaction theoretical study. Journal of Chemical Physics, 117(5), 2045–2052. https://doi.org/10.1063/1.1487827

    Article  CAS  Google Scholar 

  19. Hou, X.-J., Quan, P., Höltzl, T., Veszprémi, T., & Nguyen, M. T. (2005). Theoretical Study of Low-Lying Triplet States of Aniline. Journal of Physical Chemistry A, 109, 10396–10402. https://doi.org/10.1021/jp0533527

    Article  CAS  Google Scholar 

  20. Wang, F., Neville, S. P., Wang, R., & Worth, G. A. (2013). Quantum dynamics study of photoexcited aniline. Journal of Physical Chemistry A, 117(32), 7298–7307. https://doi.org/10.1021/jp401116c

    Article  CAS  Google Scholar 

  21. Sala, M., Kirkby, O. M., Guérin, S., & Fielding, H. H. (2014). New insight into the potential energy landscape and relaxation pathways of photoexcited aniline from CASSCF and XMCQDPT2 electronic structure calculations. Physical Chemistry Chemical Physics, 16(7), 3122–3133. https://doi.org/10.1039/C3CP54418D

    Article  CAS  Google Scholar 

  22. Ray, J., & Ramesh, S. G. (2018). Conical intersections involving the lowest 1πσ∗ state in aniline: Role of the NH2 group. Chemical Physics, 515, 77–87. https://doi.org/10.1016/j.chemphys.2018.03.015

    Article  CAS  Google Scholar 

  23. Jhang, W. R., Lai, H. Y., Lin, Y. C., Lee, C., Lee, S. H., Lee, Y. Y., Ni, C. K., & Tseng, C. M. (2019). Triplet vs π σ∗ state mediated N-H dissociation of aniline. Journal of Chemical Physics, 151(14), 141101. https://doi.org/10.1063/1.5121350

    Article  CAS  Google Scholar 

  24. Ashfold, M. N. R., Cronin, B., Devine, A. L., Dixon, R. N., & Nix, M. G. D. (2006). The role of πσ* excited states in the photodissociation of heteroaromatic molecules. Science, 312(5780), 1637–1640. https://doi.org/10.1126/science.1125436

    Article  CAS  Google Scholar 

  25. Esboui, M., & Jaidane, N. (2015). Non-radiative deactivation in phenol-pyridine complex: Theoretical study. Photochemical and Photobiological Sciences, 14(6), 1127–1137. https://doi.org/10.1039/C4PP00199K

    Article  CAS  Google Scholar 

  26. Yeh, J. H., Shen, T. L., Nocera, D. G., Leroi, G. E., Suzuka, I., Ozawa, H., & Namuta, Y. (1996). Resonance two-photon lonization spectroscopy of the aniline dimer. Journal of Physical Chemistry, 100(11), 4385–4389. https://doi.org/10.1021/jp952415q

    Article  CAS  Google Scholar 

  27. Schemmel, D., & Schütz, M. (2010). Molecular aniline clusters. I. the electronic ground state. Journal of Chemical Physics, 132(17), 174303. https://doi.org/10.1063/1.3419505

    Article  CAS  Google Scholar 

  28. Schemmel, D., & Schütz, M. (2010). Molecular aniline clusters. II. the low-lying electronic excited states. Journal of Chemical Physics, 133(13), 134307. https://doi.org/10.1063/1.3488227

    Article  CAS  Google Scholar 

  29. Montero, R., Lamas, I., León, I., Fernández, J. A., & Longarte, A. (2019). Excited state dynamics of aniline homoclusters. Physical Chemistry Chemical Physics, 21(6), 3098–3105. https://doi.org/10.1039/C8CP06416D

    Article  CAS  Google Scholar 

  30. Bonin, J., & Robert, M. (2011). Photoinduced proton-coupled electron transfers in biorelevant phenolic systems. Photochemistry and Photobiology, 87(6), 1190–1203. https://doi.org/10.1111/j.1751-1097.2011.00996.x

    Article  CAS  Google Scholar 

  31. Weinberg, D. R., Gagliardi, C. J., Hull, J. F., Murphy, C. F., Kent, C. A., Westlake, B. C., Paul, A., Ess, D. H., McCafferty, D. G., & Meyer, T. J. (2012). Proton-coupled electron transfer. In Chemical Reviews (Vol. 112, Issue 7, pp. 4016–4093). doi:https://doi.org/10.1021/cr200177j

  32. Mayer, J. M., Hrovat, D. A., Thomas, J. L., & Borden, W. T. (2002). Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Methanol, and Phenoxyl/Phenol Self-Exchange Reactions. Journal of the American Chemical Society, 124, 11142–11147. https://doi.org/10.1021/ja012732c

    Article  CAS  Google Scholar 

  33. Tishchenko, O., Truhlar, D. G., Ceulemans, A., & Minh, T. N. (2008). A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals. Journal of the American Chemical Society, 130(22), 7000–7010. https://doi.org/10.1021/ja7102907

    Article  CAS  Google Scholar 

  34. Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system turbomole. Chemical Physics Letters, 162(3), 165–169. https://doi.org/10.1016/0009-2614(89)85118-8

    Article  CAS  Google Scholar 

  35. Weigend, F., Häser, M., Patzelt, H., & Ahlrichs, R. (1998). RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chemical Physics Letters, 294(1–3), 143–152. https://doi.org/10.1016/S0009-2614(98)00862-8

    Article  CAS  Google Scholar 

  36. Hättig, C. (2003). Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. Journal of Chemical Physics, 118(17), 7751–7761. https://doi.org/10.1063/1.1564061

    Article  CAS  Google Scholar 

  37. Köhn, A., & Hättig, C. (2003). Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. Journal of Chemical Physics, 119(10), 5021–5036. https://doi.org/10.1063/1.1597635

    Article  CAS  Google Scholar 

  38. Rutledge, L. R., Navarro-Whyte, L., Peterson, T. L., & Wetmore, S. D. (2011). Effects of extending the computational model on DNA-protein T-shaped interactions: The case of adenine-histidine dimers. Journal of Physical Chemistry A, 115(45), 12646–12658. https://doi.org/10.1021/jp203248j

    Article  CAS  Google Scholar 

  39. Kadam, R. U., Garg, D., Schwartz, J., Visini, R., Sattler, M., Stocker, A., Darbre, T., & Reymond, J. L. (2013). CH-π “t-shape” interaction with histidine explains binding of aromatic galactosides to Pseudomonas aeruginosa lectin LecA. ACS Chemical Biology, 8(9), 1925–1930. https://doi.org/10.1021/cb400303w

    Article  CAS  Google Scholar 

  40. Nishio, M., Umezawa, Y., Fantini, J., Weiss, M. S., & Chakrabarti, P. (2014). CH-π hydrogen bonds in biological macromolecules. In Physical Chemistry Chemical Physics (Vol. 16, Issue 25, pp. 12648–12683). doi:https://doi.org/10.1039/C4CP00099D

  41. Tsuzuki, S., & Fujii, A. (2008). Nature and physical origin of CH/π interaction: Significant difference from conventional hydrogen bonds. Physical Chemistry Chemical Physics, 10(19), 2584–2594. https://doi.org/10.1039/b718656h

    Article  CAS  Google Scholar 

  42. Sinnokrot, M. O., & Sherrill, C. D. (2004). Substituent effects in π-π interactions: Sandwich and t-shaped configurations. Journal of the American Chemical Society, 126(24), 7690–7697. https://doi.org/10.1021/ja049434a

    Article  CAS  Google Scholar 

  43. Smith, T., Slipchenko, L. V., & Gordon, M. S. (2008). Modeling π-π interactions with the effective fragment potential method: The benzene dimer and substituents. Journal of Physical Chemistry A, 112(23), 5286–5294. https://doi.org/10.1021/jp800107z

    Article  CAS  Google Scholar 

  44. Ashfold, M. N. R., King, G. A., Murdock, D., Nix, M. G. D., Oliver, T. A. A., & Sage, A. G. (2010). πσ* Excited states in molecular photochemistry. Physical Chemistry Chemical Physics, 12(6), 1218–1238. https://doi.org/10.1039/B921706A

    Article  CAS  Google Scholar 

  45. Scheiner, S. (2000). Theoretical studies of excited state proton transfer in small model systems. Journal of Physical Chemistry A, 104(25), 5898–5909. https://doi.org/10.1021/jp000125q

    Article  CAS  Google Scholar 

  46. Sobolewski, A. L., & Domcke, W. (1999). Ab initio potential-energy functions for excited state intramolecular proton transfer: A comparative study of o-hydroxybenzaldehyde, salicylic acid and 7-hydroxy-1-indanone. Physical Chemistry Chemical Physics, 1(13), 3065–3072. https://doi.org/10.1039/a902565k

    Article  CAS  Google Scholar 

  47. Sobolewski, A. L., & Domcke, W. (2000). Photoinduced charge separation in indole-water clusters. Chemical Physics Letters, 329(1–2), 130–137. https://doi.org/10.1016/S0009-2614(00)00983-0

    Article  CAS  Google Scholar 

  48. Sobolewski, A. L., & Domcke, W. (2001). Photoinduced electron and proton transfer in phenol and its clusters with water and ammonia. Journal of Physical Chemistry A, 105(40), 9275–9283. https://doi.org/10.1021/jp011260l

    Article  CAS  Google Scholar 

  49. Tanaka, H., & Nishimoto, K. (1984). Ab initio molecular orbital study on the electronic structure of some excited hydrogen-bonding systems. Journal of Physical Chemistry, 88(6), 1052–1055. https://doi.org/10.1021/j150650a002

    Article  CAS  Google Scholar 

  50. Ikeda, N., Okada, T., & Mataga, N. (1980). Fluorescence and picosecond laser photolysis studies on the deactivation processes of excited hydrogen bonding systems. Chemical Physics Letters, 69(2), 251–254. https://doi.org/10.1016/0009-2614(80)85057-3

    Article  CAS  Google Scholar 

  51. Martin, M. M., Ikeda, N., Okada, T., & Mataga, N. (1982). Picosecond laser photolysis studies of deactivation processes of excited hydrogen-bonding complexes. 2. Dibenzocarbazole-pyridine systems. Journal of Physical Chemistry, 86(21), 4148–4156. https://doi.org/10.1021/j100218a012

    Article  CAS  Google Scholar 

  52. Martin, M., Miyasaka, H., Karen, A., & Mataga, N. (1985). Charge transfer in dibenzocarbazole-pyridine hydrogen-bonded complexes: The role of the geometry of the complex. Journal of Physical Chemistry, 89(1), 182–185. https://doi.org/10.1021/j100247a038

    Article  CAS  Google Scholar 

  53. Ikeda, N., Miyasaka, H., Okada, T., & Malaga, N. (1983). Picosecond Laser Photolysis Studies of Deactivation Processes of Excited Hydrogen Bonding Complexes. 3. Detection of the Nonfluorescent Charge-Transfer State in the Excited 1-Aminopyrene-Pyridine Hydrogen Bonded Pair and Related Systems†. Journal of the American Chemical Society, 105(16), 5206–5211. https://doi.org/10.1021/ja00354a004

    Article  CAS  Google Scholar 

  54. Miyasaka, H., Tabata, A., Ojima, S., Ikeda, N., & Mataga, N. (1993). Femtosecond-picosecond laser photolysis studies on the mechanisms of fluorescence quenching induced by hydrogen-bonding interactions - 1-Pyrenol-pyridine systems. Journal of Physical Chemistry, 97(31), 8222–8228. https://doi.org/10.1021/j100133a017

    Article  CAS  Google Scholar 

  55. Mataga, N., & Miyasaka, H. (2007). Electron Transfer and Exciplex Chemistry. In Advances in Chemical Physics (pp. 431–496). John Wiley & Sons, Ltd. doi:https://doi.org/10.1002/9780470141663.ch8

  56. Herbich, J., Kijak, M., Zielińska, A., Thummel, R. P., & Waluk, J. (2002). Fluorescence quenching by pyridine and derivatives induced by intermolecular hydrogen bonding to pyrrole-containing heteroaromatics. Journal of Physical Chemistry A, 106(10), 2158–2163. https://doi.org/10.1021/jp012515y

    Article  CAS  Google Scholar 

  57. Waluk, J. (2003). Hydrogen-Bonding-Induced Phenomena in Bifunctional Heteroazaaromatics. Accounts of Chemical Research, 36(11), 832–838. https://doi.org/10.1021/ar0200549

    Article  CAS  Google Scholar 

  58. Rode, M. F., & Sobolewski, A. L. (2008). Photophysics of inter- and intra-molecularly hydrogen-bonded systems: Computational studies on the pyrrole-pyridine complex and 2(2′-pyridyl)pyrrole. Chemical Physics, 347(1–3), 413–421. https://doi.org/10.1016/j.chemphys.2007.11.013

    Article  CAS  Google Scholar 

  59. Omidyan, R., Salehi, M., & Azimi, G. (2015). A theoretical exploration of the nonradiative deactivation of hydrogen-bond complexes: Isoindole-pyridine and quinoline-pyrrole. RSC Advances, 5(118), 97619–97628. https://doi.org/10.1039/C5RA18950K

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Esboui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 71 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esboui, M., Trabelsi, J. Radiationless deactivation pathways versus H-atom elimination from the N–H bond photodissociation in PhNH2-(Py)n (n = 1,2) complexes. Photochem Photobiol Sci 22, 33–45 (2023). https://doi.org/10.1007/s43630-022-00295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00295-z

Navigation