Log in

Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time-dependent density functional theory

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460–470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein–substrate complex was optimized using a linear scaling quantum–mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haddock, S. H. D., Moline, M. A., & Case, J. F. (2010). Bioluminescence in the sea. Annual Review of Marine Science, 2, 443–493.

    Article  PubMed  Google Scholar 

  2. Widder, E. A. (2010). Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science, 328, 704–708.

    Article  CAS  PubMed  Google Scholar 

  3. Shimomura, O. (2006). Bioluminescence: chemical principles and methods. . World Scientific Publishing Co.

    Book  Google Scholar 

  4. Markova, S. V., & Vysotski, E. S. (2015). Coelenterazine-dependent luciferases. Biochemistry (Mosc), 80, 714–732.

    Article  CAS  Google Scholar 

  5. Vysotski, E. S., Markova, S. V., & Frank, L. A. (2006). Calcium-regulated photoproteins of marine coelenterates. Molecular Biology, 40, 404–417.

    Article  Google Scholar 

  6. Shimomura, O., & Johnson, F. H. (1972). Structure of the light-emitting moiety of aequorin. Biochemistry, 11, 1602–1608.

    Article  CAS  PubMed  Google Scholar 

  7. Cormier, M. J., Hori, K., Karkhanis, Y. D., Anderson, J. M., Wampler, J. E., Morin, J. G., & Hastings, J. W. (1973). Evidence for similar biochemical requirements for bioluminescence among the coelenterates. Journal of Cellular Physiology, 81, 291–297.

    Article  CAS  PubMed  Google Scholar 

  8. Vysotski, E. S., & Lee, J. (2004). Ca2+-regulated photoproteins: structural insight into the bioluminescence mechanism. Accounts of Chemical Research, 37, 405–415.

    Article  CAS  PubMed  Google Scholar 

  9. Shimomura, O., & Johnson, F. H. (1975). Regeneration of the photoprotein aequorin. Nature, 256, 236–238.

    Article  CAS  PubMed  Google Scholar 

  10. Eremeeva, E. V., Natashin, P. V., Song, L., Zhou, Y., van Berkel, W. J., Liu, Z. J., & Vysotski, E. S. (2013). Oxygen activation of apoobelin-coelenterazine complex. ChemBioChem, 14, 739–745.

    Article  CAS  PubMed  Google Scholar 

  11. Bonora, M., Giorgi, C., Bononi, A., Marchi, S., Patergnani, S., Rimessi, A., Rizzuto, R., & Pinton, P. (2013). Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nature Protocols, 8, 2105–2118.

    Article  CAS  PubMed  Google Scholar 

  12. Alonso, M. T., Rodríguez-Prados, M., Navas-Navarro, P., Rojo-Ruiz, J., & García-Sancho, J. (2017). Using aequorin probes to measure Ca2+ in intracellular organelles. Cell Calcium, 64, 3–11.

    Article  CAS  PubMed  Google Scholar 

  13. Prasher, D., McCann, R. O., & Cormier, M. J. (1985). Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochemical and Biophysical Research Communications, 126, 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  14. Inouye, S., Noguchi, M., Sakaki, Y., Takagi, Y., Miyata, T., Iwanaga, S., Miyata, T., & Tsuji, F. I. (1985). Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proceedings of the National Academy of Sciences of the United States of America, 82, 3154–3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prasher, D. C., McCann, R. O., Longiaru, M., & Cormier, M. J. (1987). Sequence comparisons of complementary DNAs encoding aequorin isotypes. Biochemistry, 26, 1326–1332.

    Article  CAS  PubMed  Google Scholar 

  16. Inouye, S., & Tsuji, F. I. (1993). Cloning and sequence analysis of cDNA for the Ca2+-activated photoprotein, clytin. FEBS Letters, 315, 343–346.

    Article  CAS  PubMed  Google Scholar 

  17. Inouye, S. (2008). Cloning, expression, purification and characterization of an isotype of clytin, a calcium-binding photoprotein from the luminous hydromedusa Clytia gregarium. Journal of Biochemistry, 143, 711–717.

    Article  CAS  PubMed  Google Scholar 

  18. Markova, S. V., Burakova, L. P., Frank, L. A., Golz, S., Korostileva, K. A., & Vysotski, E. S. (2010). Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein. Photochemical and Photobiological Sciences, 9, 757–765.

    Article  CAS  PubMed  Google Scholar 

  19. Fourrage, C., Swann, K., Garcia, J. R. G., Campbell, A. K., & Houliston, E. (2014). An endogenous green fluorescent protein photoprotein pair in Clytia hemisphaerica eggs shows co-targeting to mitochondria and efficient bioluminescence energy transfer. Open Biology, 4, 130206.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fagan, T. F., Ohmiya, Y., Blinks, J. R., Inouye, S., & Tsuji, F. I. (1993). Cloning, expression and sequence analysis of cDNA for the Ca2+-binding photoprotein, mitrocomin. FEBS Letters, 333, 301–305.

    Article  CAS  PubMed  Google Scholar 

  21. Burakova, L. P., Natashin, P. V., Markova, S. V., Eremeeva, E. V., Malikova, N. P., Cheng, C., Liu, Z. J., & Vysotski, E. S. (2016). Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein. Journal of Photochemistry and Photobiology B: Biology, 162, 286–297.

    Article  CAS  Google Scholar 

  22. Illarionov, B. A., Markova, S. V., Bondar, V. S., Vysotski, E. S., & Gitelson, J. I. (1992). Cloning and expression of cDNA for the Ca2+-activated photoprotein obelin from the hydroid polyp Obelia longissima. Doklady Akademii Nauk, 326, 911–913.

    CAS  Google Scholar 

  23. Illarionov, B. A., Bondar, V. S., Illarionova, V. A., & Vysotski, E. S. (1995). Sequence of the cDNA encoding the Ca2+-activated photoprotein obelin from the hydroid polyp Obelia longissima. Gene, 153, 273–274.

    Article  CAS  PubMed  Google Scholar 

  24. Markova, S. V., Vysotski, E. S., Blinks, J. R., Burakova, L. P., Wang, B. C., & Lee, J. (2002). Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry, 41, 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  25. Ohmiya, Y., & Hirano, T. (1996). Shining the light: the mechanism of the bioluminescence reaction of calcium-binding photoproteins. Chemistry & Biology, 3, 337–347.

    Article  CAS  Google Scholar 

  26. Kawasaki, H., Nakayama, S., & Kretsinger, R. H. (1998). Classification and evolution of EF-hand proteins. BioMetals, 11, 277–295.

    Article  CAS  PubMed  Google Scholar 

  27. Head, J. F., Inouye, S., Teranishi, K., & Shimomura, O. (2000). The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature, 18, 372–376.

    Article  Google Scholar 

  28. Liu, Z. J., Vysotski, E. S., Chen, C. J., Rose, J. P., Lee, J., & Wang, B. C. (2000). Structure of the Ca2+-regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure. Protein Science, 9, 2085–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z. J., Vysotski, E. S., Deng, L., Lee, J., Rose, J. P., & Wang, B. C. (2003). Atomic resolution structure of obelin: soaking with calcium enhances electron density of the second oxygen atom substituted at the C2-position of coelenterazine. Biochemical and Biophysical Research Communications, 311, 433–439.

    Article  CAS  PubMed  Google Scholar 

  30. Titushin, M. S., Feng, Y., Stepanyuk, G. A., Li, Y., Markova, S. V., Golz, S., Wang, B. C., Lee, J., Wang, J., Vysotski, E. S., & Liu, Z. J. (2010). NMR-derived topology of a GFP-photoprotein energy transfer complex. Journal of Biological Chemistry, 285, 40891–40900.

    Article  CAS  Google Scholar 

  31. Deng, L., Markova, S. V., Vysotski, E. S., Liu, Z. J., Lee, J., Rose, J., & Wang, B. C. (2004). Crystal structure of a Ca2+-discharged photoprotein: implications for mechanisms of the calcium trigger and bioluminescence. Journal of Biological Chemistry, 279, 33647–33652.

    Article  CAS  Google Scholar 

  32. Liu, Z. J., Stepanyuk, G. A., Vysotski, E. S., Lee, J., Markova, S. V., Malikova, N. P., & Wang, B. C. (2006). Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state. Proceedings of the National Academy of Sciences of the United States of America, 103, 2570–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng, L., Vysotski, E. S., Markova, S. V., Liu, Z. J., Lee, J., Rose, J., & Wang, B. C. (2005). All three Ca2+-binding loops of photoproteins bind calcium ions: the crystal structures of calcium-loaded apo-aequorin and apo-obelin. Protein Science, 14, 663–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nelson, M. R., & Chazin, W. J. (1998). Structures of EF-hand Ca2+-binding proteins: diversity in the organization, packing and response to Ca2+ binding. BioMetals, 11, 297–318.

    Article  CAS  PubMed  Google Scholar 

  35. Eremeeva, E. V., & Vysotski, E. S. (2019). Exploring bioluminescence function of the Ca2+-regulated photoproteins with site-directed mutagenesis. Photochemistry and Photobiology, 95, 8–23.

    Article  CAS  PubMed  Google Scholar 

  36. Vysotski, E. S., & Lee, J. (2007). Bioluminescent mechanism of Ca2+-regulated photoproteins from three-dimensional structures. In V. R. Viviani & Y. Ohmiya (Eds.), Luciferases and fluorescent proteins: principles and advances in biotechnology and bioimaging. (pp. 19–41). Transworld Research Network.

    Google Scholar 

  37. Burakova, L. P., & Vysotski, E. S. (2019). Recombinant Ca2+-regulated photoproteins of ctenophores: current knowledge and application prospects. Applied Microbiology and Biotechnology, 103, 5929–5946.

    Article  CAS  PubMed  Google Scholar 

  38. Ward, W. W., & Seliger, H. H. (1976). Action spectrum and quantum yield for the photoinactivation of mnemiopsin, a bioluminescent photoprotein from the ctenophores Mnemiopsis sp. Photochemistry and Photobiology, 23, 351–363.

    Article  CAS  PubMed  Google Scholar 

  39. Anctil, M., & Shimomura, O. (1984). Mechanism of photoinactivation and reactivation in the bioluminescence system of the ctenophore Mnemiopsis. Biochemistry, 221, 269–272.

    Article  CAS  Google Scholar 

  40. Aghamaali, M. R., Jafarian, V., Sariri, R., Molakarimi, M., Rasti, B., Taghdir, M., Sajedi, R. H., & Hosseinkhani, S. (2011). Cloning, sequencing, expression and structural investigation of mnemiopsin from Mnemiopsis leidyi: an attempt toward understanding Ca2+-regulated photoproteins. Protein Journal, 30, 566–574.

    Article  CAS  Google Scholar 

  41. Markova, S. V., Burakova, L. P., Golz, S., Malikova, N. P., Frank, L. A., & Vysotski, E. S. (2012). The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca2+-regulated photoprotein. FEBS Journal, 279, 856–870.

    Article  CAS  Google Scholar 

  42. Powers, M. L., McDermott, A. G., Shaner, N., & Haddock, S. H. (2013). Expression and characterization of the calcium-activated photoprotein from the ctenophore Bathocyroe fosteri: insights into light-sensitive photoproteins. Biochemical and Biophysical Research Communications, 431, 360–366.

    Article  CAS  PubMed  Google Scholar 

  43. Stepanyuk, G. A., Liu, Z. J., Burakova, L. P., Lee, J., Rose, J., Vysotski, E. S., & Wang, B. C. (2013). Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2+-loaded apoprotein conformation state. Biochimica et Biophysica Acta, 1834, 2139–2146.

    Article  CAS  PubMed  Google Scholar 

  44. Burakova, L. P., Natashin, P. V., Malikova, N. P., Niu, F., Pu, M., Vysotski, E. S., & Liu, Z. J. (2016). All Ca2+-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: the spatial structure of Mg2+-loaded apo-berovin. Journal of Photochemistry and Photobiology B: Biology, 154, 57–66.

    Article  CAS  Google Scholar 

  45. Molakarimi, M., Gorman, M. A., Mohseni, A., Pashandi, Z., Taghdir, M., Naderi-Manesh, H., Sajedi, R. H., & Parker, M. W. (2019). Reaction mechanism of the bioluminescent protein mnemiopsin1 revealed by X-ray crystallography and QM/MM simulations. Journal of Biological Chemistry, 294, 20–27.

    Article  CAS  Google Scholar 

  46. Burakova, L. P., Stepanyuk, G. A., Eremeeva, E. V., & Vysotski, E. S. (2016). Role of certain amino acid residues of the coelenterazine binding cavity in bioluminescence of light-sensitive Ca2+-regulated photoprotein berovin. Photochemical and Photobiological Sciences, 15, 691–704.

    Article  CAS  PubMed  Google Scholar 

  47. Molakarimi, M., Mohseni, A., Taghdir, M., Pashandi, Z., Gorman, M. A., Parker, M. W., Naderi-Manesh, H., & Sajedi, R. H. (2017). QM/MM simulations provide insight into the mechanism of bioluminescence triggering in ctenophore photoproteins. PLoS ONE, 12, e0182317.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eremeeva, E. V., Markova, S. V., Frank, L. A., Visser, A. J., van Berkel, W. J., & Vysotski, E. S. (2013). Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin. Photochemical and Photobiological Sciences, 12, 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  49. Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solution model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B, 113, 6378–6396.

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., et al. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363.

    Article  CAS  Google Scholar 

  51. Barca, G. M. J., Bertoni, C., Carrington, L., et al. (2020). Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics, 152, 154102.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: protein structure and function prediction. Nature Methods, 12, 7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fedorov, D. G., & Kitaura, K. (2004). The importance of three-body terms in the fragment molecular orbital method. The Journal of Chemical Physics, 120, 6832–6840.

    Article  CAS  PubMed  Google Scholar 

  57. Fedorov, D. G. (2017). The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. WIREs Computational Molecular Science, 7, e1322.

    Article  Google Scholar 

  58. Gaus, M., Goez, A., & Elstner, M. (2013). Parametrization and benchmark of DFTB3 for organic molecules. Journal of Chemical Theory and Computation, 9, 338–354.

    Article  CAS  PubMed  Google Scholar 

  59. Peach, M. J. G., Benfield, P., Helgaker, T., & Tozer, D. J. (2008). Excitation energies in density functional theory: an evaluation and a diagnostic test. The Journal of Chemical Physics, 128, 044118.

    Article  PubMed  Google Scholar 

  60. Nishimoto, Y., & Fedorov, D. G. (2016). The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Physical Chemistry Chemical Physics, 18, 22047–22061.

    Article  CAS  PubMed  Google Scholar 

  61. Fedorov, D. G. (2019). Solvent screening in zwitterions analyzed with the fragment molecular orbital method. Journal of Chemical Theory and Computation, 15, 5404–5416.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The ab initio quantum chemical calculations were funded by RFBR and NSFC as the research project No. 19-54-53004 and RFBR research project No. 20-04-00085. The development of structural atomistic model of berovin without calcium ions generated by the I-TASSER server was funded by project 0721-2020-0033 of the Russian Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitri G. Fedorov or Eugene S. Vysotski.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 610 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilin, F.N., Rogova, A.V., Burakova, L.P. et al. Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time-dependent density functional theory. Photochem Photobiol Sci 20, 559–570 (2021). https://doi.org/10.1007/s43630-021-00039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00039-5

Navigation