Log in

Physicochemical characteristics of mineral trioxide aggregate depending on the ratio of di- and tricalcium silicates

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Mineral trioxide aggregate (MTA) has gained attention as a bioactive endodontic material used for root-end filling, root repair, pulp cap**, and iatrogenic root perforations, owing to its biocompatibility, high strength, and good sealing ability. Herein, physicochemical properties of MTA depending on the ratio of tricalcium silicate (C3S) and dicalcium silicate (C2S) was examined. A series of calcium silicate mixtures CSM of (100–x)C3S-xC2S (x = 0, 10, 14, 25, and 100) were prepared with 18 wt.% ZrO2 addition. The pH of the hydrated CSM samples in Dulbecco’s modified Eagle’s medium (DMEM) solvent were increased to 10.7–12.1 from 7.55 of free DMEM, primarily owing to Ca(OH)2 production during setting reaction of C3S and C2S. The solubilities of the hydrated CSM samples in deionized water were examined; the samples with high C2S content exhibited relatively low solubility mainly due to the longer setting time and smaller amount of Ca(OH)2 produced by C2S setting reaction compared to C3S. The flow of the CSM samples was measured by thickness of the hydrated samples under 120 g (ISO 6876:2012), which decreased with increasing C2S content, which indicates that higher C2S contents enhance penetration ability and workability of the MTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available upon reasonable request.

References

  1. A. O’Donnell, Endodontics in Primary Teeth, 6th edn. (Churchill Livingstone, London, 2010), pp.197–207

    Google Scholar 

  2. M. Fridland, R. Rosado, M.T.A. Solubility, A long term study. J. Endod. 31(5), 376–379 (2005)

    Google Scholar 

  3. L.F.R. Garcia, M.A. Chinelatti, H.L. Rossetto, F.C.P. Pires-de-Souza, Solubility and disintegration of new calcium aluminate cement (EndoBinder) containing different radiopacifying agents. J. Endod. 40(2), 261–265 (2014)

    Google Scholar 

  4. J.A. Dean, McDonald and Avery’s Dentistry for the Child and Adolescent, 10th edn. (Mosby Inc, Missouri, 2016), pp.158–159

    Google Scholar 

  5. J. You, J.-S. Yoo, K.-Y. Kum, S.-H. Hong, Hydration behavior and radiopacity of strontium substituted Ca3SiO5 cement. J. Korean Ceram. Soc. 58, 330–336 (2021)

    CAS  Google Scholar 

  6. L.H. Berman, K.M. Hargreaves, Cohen’s Pathways of the Pulp (Elsevier Health Sciences, Amsterdam, 2021)

    Google Scholar 

  7. Y. Kim, S.W. Lee, H.T. Rho, S.-I. Kim, Hydration and microhardness of mineral trioxide aggregate depending on ratio between di- and tricalcium silicates. Int. J Appl. Ceram. Technol. 19, 1605–1612 (2022)

    CAS  Google Scholar 

  8. A. Kamali, S. Javadpour, B. Javid, N.K. Rad, S.N. Dezfuli, Effects of chitosan and zirconia on setting time, mechanical strength, and bioactivity of calcium silicate-based cement. Int. J. Appl. Ceram. Technol. 14, 135–144 (2017)

    CAS  Google Scholar 

  9. W. Liu, J. Chang, Z. Yue, Physicochemical properties and biocompatibility of tricalcium and dicalcium silicate composite cements after hydration. Int. J. Appl. Ceram. Technol. 8, 560–565 (2011)

    CAS  Google Scholar 

  10. A. Cutajar, B. Mallia, S. Abela, J. Camilleri, Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent. Mater. 27(9), 879–891 (2011)

    CAS  Google Scholar 

  11. I. Belobrov, P. Parashos, Treat of tooth discoloration after the use of white mineral trioxide aggregate. J. Endod. 37(7), 1017–1020 (2011)

    Google Scholar 

  12. M. Vallés, M. Mercadé, F. Duran-Sindreu, J.L. Bourdelande, M. Roig, Influence of light and oxygen on the color stability of five calcium silicate-based materials. J. Endod. 39(4), 525–528 (2013)

    Google Scholar 

  13. M.A. Marciano, R.M. Costa, J. Camilleri, R.F.L. Mondelli, B.M. Guimarães, M.A.H. Duarte, Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J. Endod. 40(8), 1235–1240 (2014)

    Google Scholar 

  14. K.S. Coomaraswamy, P.J. Lumley, M.P. Hofmann, Effect of bismuth oxide radioopacifier content on the material properties of an endodontic portland cement–based (MTA-like) system. J. Endod. 33(3), 295–298 (2007)

    Google Scholar 

  15. M. Tanomaru-Filho, V. Morales, G.F. Silva, R. Bosso, J.M.S.N. Reis, M.A.H. Duarte, J.M. Guerreiro-Tanomaru, Compressive strength and setting time of MTA and portland cement associated with different radiopacifying agents. ISRN Dent. 2012, 898051 (2012)

    Google Scholar 

  16. K.S. Coomaraswamy, P.J. Lumley, R.M. Shelton, M.P. Hofmann, Evaluation of different radiopacifiers for an MTA-like dental cement. Key Eng. Mater. 361, 885–888 (2008)

    Google Scholar 

  17. M.A.H. Duarte, G.D.O.E. Kadre, R.R. Vivan, J.M.G. Tanomaru, M.T. Filho, I.G. Moraes, Radiopacity of portland cement associated with different radiopacifying agents. J. Endod. 35(5), 737–740 (2009)

    Google Scholar 

  18. J.M. Guerreiro-Tanomaru, A. Trindade-Junior, B.C. Costa, G.F. Silva, L.D. Cifali, M.I.B. Bernardi, M. Tanomaru-Filho, Effect of zirconium oxide and zinc oxide nanoparticles on physicochemical properties and antibiofilm activity of a calcium silicate-based material. Sci. World J. 2014, 975213 (2014)

    Google Scholar 

  19. N.J. Coleman, Q. Li, The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement. Mater. Sci. Eng. C 33(1), 427–433 (2013)

    CAS  Google Scholar 

  20. G.F. Silva, J.M. Guerreiro-Tanomaru, T.S. Da Fonseca, M.I.B. Bernardi, E. Sasso-Cerri, M. Tanomaru-Filho, P.S. Cerri, Zirconium oxide and niobium oxide used as radiopacifiers in a calcium silicatebased material stimulate fibroblast proliferation and collagen formation. Int. Endod J. 50, e95–e108 (2017)

    Google Scholar 

  21. J. Camilleri, Evaluation of the effect of intrinsic material properties and ambient conditions on the dimensional stability of white mineral trioxide aggregate and Portland cement. J Endo. 37(2), 239–245 (2011)

    Google Scholar 

  22. ISO 6876:2012, Dentistry: Root Canal Sealing Materials (ISO, Geneva, 2012)

    Google Scholar 

  23. M. Galal, D.Y. Zaki, M.I. Rabie, S.M. El-Shereif, T.M. Hamdy, Solubility, pH change, and calcium ion release of low solubility endodontic mineral trioxide aggregate. Bull. Natl. Res. Cent. 44, 42 (2020)

    Google Scholar 

  24. F.F.E. Torres, J.M. Guerreiro-Tanomaru, R. Bosso-Martelo, C.G. Espir, J. Camilleri, M. Tanomaru-Filho, Solubility, porosity, dimensional and volumetric change of endodontic sealers. Braz. Dent. J. 30(4), 368–373 (2019)

    Google Scholar 

  25. K. Urban, J. Neuhaus, D. Donnermeyer, E. Schäfer, T. Dammaschke, Solubility and pH value of 3 different root canal sealers: a long-term investigation. J. Endod. 44(11), 1736–1740 (2018)

    Google Scholar 

  26. A.S. Milani, A. Moeinian, M.H.S. Barhaghi, A.A. Abdollahi, Evaluation of the film thickness and antibacterial property of mineral trioxide aggregate mixed with propylene glycol as a root canal sealer. Dent. Res. J. 17(2), 142–146 (2020)

    Google Scholar 

  27. S. Asgary, S. Sbababi, T. Jafarzadeb, S. Amini, S. Kbeirieb, The properties of a new endodontic material. J. Endod. 34, 990–993 (2008)

    Google Scholar 

  28. J. Camilleri, Characterization of hydration products of mineral trioxide aggregate. Int. Endod. J. 41, 408–417 (2008)

    CAS  Google Scholar 

  29. J. Camilleri, F. Sorrentino, D. Damidot, Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, biodentine and MTA Angelus. Dent. Mater. 29(5), 580–593 (2013)

    CAS  Google Scholar 

  30. N. Malhotra, A. Agarwal, K. Mala, Mineral trioxide aggregate: a review of physical properties. Compend. Contin. Educ. Dent. 34, e25–e32 (2013)

    Google Scholar 

  31. M. Torabinejad, N. Chivian, Clinical applications of mineral trioxide aggregate. J Endod. 25(3), 197–205 (1999)

    CAS  Google Scholar 

  32. H. Daneshmand, M. Rezaeinasab, M. Asgary, M. Karimi, Wettability alteration and retention of mixed polymer-grafted silica nanoparticles onto oil-wet porous medium. Pet. Sci. 18, 962–982 (2021)

    CAS  Google Scholar 

  33. W. Ashraf, J. Olek, V. Atakan, A comparative study of the reactivity of calcium silicates during hydration and carbonation reactions. Paper presented at: ICCC 2015. 14th International Congress on the Chemistry of Cement; 2015 Oct 13–16; Bei**g, China (2015)

  34. V. Gong, R. França, Nanoscale chemical surface characterization of four different types of dental pulp-cap** materials. J. Dent. 58, 11–18 (2017)

    CAS  Google Scholar 

  35. M.C. Jiménez-Sánchez, J.J. Segura-Egea, A. Díaz-Cuenca, A microstructure insight of MTA repair HP of rapid setting capacity and bioactive response. Materials. 13(7), 1641 (2020)

    Google Scholar 

  36. M. Benmohamed, R. Alouani, A. Jmayai, A.B.H. Amara, H.B. Rhaiem, Morphological analysis of white cement clinker minerals: discussion on the crystallization-related defects. Int. J. Anal. Chem. 2016, 1259094 (2016)

    Google Scholar 

  37. G. Kakali, S. Tsivilis, K. Kolovos, N. Voglis, J. Aivaliotis, T. Perraki, E. Passialakou, M. Stamatakis, Use of secondary mineralizing raw materials in cement production. A case study of a wolframite–stibnite. Cem. Concr. Compos. 27(2), 155–161 (2005)

    CAS  Google Scholar 

  38. M. Park, J. Kim, N. Choi, S. Kim, Effect of acidic environment on the push-out bond strength and surface morphology of tricalcium silicate materials. J. Korean Acad. Pediatr. Dent. 43, 137–144 (2016)

    Google Scholar 

  39. W. Li, Y. Wang, C. Yu, Z. He, C. Zuo, Y. Yu, Nano-scale study on molecular structure, thermal stability, and mechanical properties of geopolymer. J. Korean Ceram. Soc. 60, 413–423 (2023)

    CAS  Google Scholar 

  40. G. Voicu, A.M. Popa, A.I. Badanoiu, F. Iordache, Influence of thermal treatment conditions on the properties of dental silicate cements. Molecules 21(2), 233 (2016)

    Google Scholar 

  41. S. Goñi, F. Puertas, M.S. Hernández, M. Palacios, A. Guerrero, J.S. Dolado, B. Zanga, F. Baroni, Quantitative study of hydration of C3S and C2S by thermal analysis. J. Therm. Anal. Calorim. 102(3), 965–973 (2010)

    Google Scholar 

  42. K. Suzuki, T. Nishikawa, S. Ito, Formation and carbonation of C–S–H in water. Cem. Concr. Res. 15(2), 213–224 (1985)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program (S3319649), funded by the Ministry of SMEs and Startups (MSS, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-il Kim.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.W., Park, O., Kang, S. et al. Physicochemical characteristics of mineral trioxide aggregate depending on the ratio of di- and tricalcium silicates. J. Korean Ceram. Soc. 60, 1028–1035 (2023). https://doi.org/10.1007/s43207-023-00325-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00325-1

Keywords

Navigation