Log in

Efficient CO oxidation catalyzed by nickel supported on Ta2O5

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CO oxidation has attracted much attention in the field of automotive exhaust treatment and fuel cell industrial process. In this study, NiO loaded on the Ta2O5 was prepared and used to catalyze CO oxidation. And the catalyst NiO/Ta2O5 was characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). The catalytic performance was evaluated and the mechanism was analyzed. The catalytic performance has been enhanced greatly by combining NiO with Ta2O5, the catalyst shows excellent activity in a wide CO concentration from 500 to 10,000 ppm, with CO conversion above 90%. In addition, NiO/Ta2O5 has good stability for CO oxidation with no apparent loss of activity for 8 h. The XPS results show that oxygen defects emerged after reaction. The presence of oxygen defects is responsible for the high catalytic activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agulyansky A (2004) Chemistry of tantalum and niobium fluoride compounds. In: Agulyansky A (ed) Elsevier Science. Crystal chemistry of tantalum and niobium fluoride compounds USA

    Google Scholar 

  • Biju V, Abdul Khadar M (2001) DC conductivity of consolidated nanoparticles of NiO. Mater Res Bull 36(1):21–33

    Article  CAS  Google Scholar 

  • Bose P et al (2016) A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation. J Asian Cer Soc 4(1):1–5

    Article  Google Scholar 

  • Cai Y-F et al (2022) Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Met 41(9):3060–3068

    Article  CAS  Google Scholar 

  • Croft G, Fuller MJ (1977) Water-promoted oxidation of carbon monoxide over tin(IV) oxide-supported palladium. Nature 269(5629):585–586

    Article  CAS  Google Scholar 

  • Fang C et al (2021) Ru nanoworms loaded TiO2 for their catalytic performances toward CO oxidation. ACS Appl Mater Interf 13(4):5079–5087

    Article  CAS  Google Scholar 

  • Galwey AK et al (1985) Surface retexturing of Pt wires during the catalytic oxidation of CO. Nature 313(6004):668–671

    Article  CAS  Google Scholar 

  • Gurylev V (2022) A review on the development and advancement of Ta2O5 as a promising photocatalyst. Materials Today Sustain 18:100131

    Article  Google Scholar 

  • Han X et al (2013) CO oxidation on Ta-modified SnO2 solid solution catalysts. Solid State Sci 20:103–109

    Article  CAS  Google Scholar 

  • Hernández-Fontes C et al (2023) Insight into CO selective chemisorption from syngas mixtures through Li2MnO3; a new H2 enrichment material. React Chem Eng 8(1):229–243

    Article  Google Scholar 

  • Hosseini-Sarvari M, Akrami Z (2021) Solar and visible-light active nano Ni/g-C3N4 photocatalyst for carbon monoxide (CO) and ligand-free carbonylation reactions. Catal Sci Technol 11(3):956–969

    Article  CAS  Google Scholar 

  • Hu L et al (2018) Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal 8(10):9312–9319

    Article  CAS  Google Scholar 

  • Huang WJ et al (2021) Recent advances in engineering montmorillonite into catalysts and related catalysis. Catalysis Rev 11:1–57

    Google Scholar 

  • Jasik A et al (2005) Study of nickel catalysts supported on Al2O3, SiO2 or Nb2O5 oxides. J Mol Catal a: Chem 242(1):81–90

    Article  CAS  Google Scholar 

  • Jeong H et al (2018) Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J Am Chem Soc 140(30):9558–9565

    Article  CAS  PubMed  Google Scholar 

  • Lee S et al (2016) Magnetic Ni-Co alloys induced by water gas shift reaction, Ni-Co oxides by CO oxidation and their supercapacitor applications. Appl Surf Sci 386:393–404

    Article  CAS  Google Scholar 

  • Li M et al (2015) XPS analyses on Ta/Au/NiFe/NiO/Ta films. Surf Interf Anal 47(4):540–544

    Article  CAS  Google Scholar 

  • Lin M et al (2020) Elucidation of active sites of gold nanoparticles on acidic Ta2O5 supports for CO oxidation. ACS Catal 10(16):9328–9335

    Article  CAS  Google Scholar 

  • Liu J et al (2018) Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Appl Catal B 222:35–43

    Article  CAS  Google Scholar 

  • Liu F et al (2022) Insight into the synergy effect on the improved reactivity of spinel NiMn2O4 oxygen carrier in chemical loo** combustion. Fuel 313:122680

    Article  CAS  Google Scholar 

  • Nowak I, Ziolek M (1999) niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem Rev 99(12):3603–3624

    Article  CAS  PubMed  Google Scholar 

  • Qin H et al (2023a) Highly efficient catalytic CO oxidation by balancing the crystal and mesoporous structure of Ta2O5 carrier combined with cobalt. Fuel 347:128290

    Article  CAS  Google Scholar 

  • Qin H et al (2023b) Efficient CO catalytic oxidation by the combination of cobalt and excellent carrier Ta2O5. Fuel 333:126179

    Article  CAS  Google Scholar 

  • Rodríguez JL et al (2013) Reactivity of NiO for 2,4-D degradation with ozone: XPS studies. J Hazard Mater 262:472–481

    Article  PubMed  Google Scholar 

  • Rubinstein M, Kodama RH, Makhlouf SA (2001) Electron spin resonance study of NiO antiferromagnetic nanoparticles. J Magn Magn Mater 234(2):289–293

    Article  CAS  Google Scholar 

  • Sakamoto K et al (2020) XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Appl Surf Sci 526:146729

    Article  CAS  Google Scholar 

  • Sarkodie B et al (2021) Promotional effects of CuxO on the activity of Cu/ZnO catalyst toward efficient CO oxidation. Appl Surf Sci 548:149241

    Article  CAS  Google Scholar 

  • Slavinskaya EM et al (2020) Thermal activation of Pd/CeO2-SnO2 catalysts for low-temperature CO oxidation. Appl Catal B 277:119275

    Article  CAS  Google Scholar 

  • Tomellini M (1992) A comment on “final states after Ni2p photoemission in NiO.” J Electron Spectrosc Relat Phenom 58(1):75–78

    Article  CAS  Google Scholar 

  • Uhlenbrock S et al (1992) The influence of defects on the Ni 2p and O 1s XPS of NiO. J Phys: Condens Matter 4(40):7973–7978

    CAS  Google Scholar 

  • Wang Y, Wang R (2022) Effects of chemical etching and reduction activation of CeO2 nanorods supported ruthenium catalysts on CO oxidation. J Colloid Interf Sci 613:836–846

    Article  CAS  Google Scholar 

  • Wang Y et al (2015) Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens Actuators, B Chem 209:515–523

    Article  CAS  Google Scholar 

  • Wang F et al (2019) Pinpointing the active sites and reaction mechanism of CO oxidation on NiO. Phys Chem Chem Phys 21(32):17852–17858

    Article  CAS  PubMed  Google Scholar 

  • Wojcieszak R et al (2006) Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts. J Mol Catal a Chem 256(1):225–233

    Article  CAS  Google Scholar 

  • **a S et al (2018) Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy 45:407–412

    Article  CAS  Google Scholar 

  • **e X et al (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239):746–749

    Article  CAS  PubMed  Google Scholar 

  • Xu Y et al (2014) Fabrication of Ni–Al nanoparticles via vacuum arc plasma evaporation and their catalytic properties for CO oxidation. Appl Catal A 478:165–174

    Article  CAS  Google Scholar 

  • Zawadzki A et al (2014) Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process Technol 128:432–440

    Article  CAS  Google Scholar 

  • Zhang X et al (2017) Baize-like CeO2 and NiO/CeO2 nanorod catalysts prepared by dealloying for CO oxidation. Nanotechnology 28(4):045602

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Fengli Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yao, P., Qin, H. et al. Efficient CO oxidation catalyzed by nickel supported on Ta2O5. Braz. J. Chem. Eng. 41, 417–425 (2024). https://doi.org/10.1007/s43153-023-00370-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-023-00370-7

Keywords

Navigation