Log in

From Zygmund space to Bergman–Zygmund space

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

Let \(0<p<\infty , \alpha >-1,\) and \(\beta ,\gamma \in {\mathbb {R}}.\) Let \(\mu \) be a finite positive Borel measure on the unit disk \({\mathbb {D}}.\) The Zygmund space \(L^{p,\beta }(d\mu )\) consists of all measurable functions f on \({\mathbb {D}}\) such that \(|f|^p\log ^\beta (e+|f|)\in L^1(d\mu )\) and the Bergman–Zygmund space \(A^{p,\beta }_{\alpha }\) is the set of all analytic functions in \(L^{p,\beta }(dA_\alpha ),\) where \(dA_\alpha =c_\alpha (1-|z|^2)^\alpha dA.\) We prove an interpolation theorem for the Zygmund space assuming the weak type estimates on the Zygmund spaces themselves at the end points rather than the weak \(L^p-L^q\) type estimates at the end points. We show that the Bergman–Zygmund space is equal to the \(\log ^\beta (e/(1-|z|)) dA_\alpha (z)\) weighted Bergman space as a set and characterize the bounded and compact Carleson measure \(\mu \) from \(A^{p,\beta }_{\alpha }\) into \(A^{p,\gamma }(d\mu ),\) respectively. The Carleson measure characterizations are of the same type for any pairs of \((\beta , \gamma )\) whether \(\beta <\gamma \) or \(\gamma \le \beta .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Auscher, P., Hofmann, S., Lewis, J., Tchamitchian, P.: Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators. Acta Math. 187, 161–190 (2001)

    Article  MathSciNet  Google Scholar 

  2. Beatrous, F., Burbea, J.: Holomorphic Sobolev spaces on the ball. Diss. Math. 276, 1–57 (1989)

    MathSciNet  Google Scholar 

  3. Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Diss. Math. 175, 1–72 (1980)

    MathSciNet  Google Scholar 

  4. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press, New York (1988)

    Google Scholar 

  5. Blozinski, A.P.: Convolution of \(L(p, q)\) functions. Proc. Am. Math. Soc. 32, 237–240 (1972)

    MathSciNet  Google Scholar 

  6. Calderón, A.P., Zygmund, A.: Singular integrals and periodic functions. Stud. Math. 14, 249–271 (1954)

    Article  MathSciNet  Google Scholar 

  7. Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. (2) 76, 547–559 (1962)

    Article  MathSciNet  Google Scholar 

  8. Choe, B.R., Koo, H., Smith, W.: Carleson measures for the area Nevanlinna spaces and applications. J. Anal. Math. 104, 207–233 (2008)

    Article  MathSciNet  Google Scholar 

  9. Deng, Y., Huang, L., Zhao, T., Zheng, D.: Bergman projection and Bergman spaces. J. Oper. Theory 46, 3–24 (2001)

    MathSciNet  Google Scholar 

  10. Duren, P.L.: Theory of \(H^p\) Spaces. Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)

    Google Scholar 

  11. Edmunds, D.E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz–Zygmund spaces. Ind. Univ. Math. J. 44, 19–43 (1995)

    Article  MathSciNet  Google Scholar 

  12. Garnett, J., Mourgoglou, M., Tolsa, X.: Uniform rectifiability from Carleson measure estimates and \(\epsilon \)-approximability of bounded harmonic functions. Duke Math. J. 167(8), 1473–1524 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hörmander, L.: \(L^p\) estimates for (pluri-) subharmonic functions. Math. Scand. 20, 65–78 (1967)

    Article  MathSciNet  Google Scholar 

  14. Hunt, R.A.: On \(L(p, q)\) spaces. Enseign. Math. (2) 12, 249–276 (1966)

    MathSciNet  Google Scholar 

  15. Huo, Z., Wick, B.D.: Weak-type estimates for the Bergman projection on the polydisc and the Hartogs triangle. Bull. Lond. Math. Soc. 52, 891–906 (2020)

    Article  MathSciNet  Google Scholar 

  16. Jarchow, H., **ao, J.: Composition operators between Nevanlinna classes and Bergman spaces with weights. J. Oper. Theory 46, 605–618 (2010)

    MathSciNet  Google Scholar 

  17. Krasnoselskii, M.A., Rutickii, Y.B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961)

    Google Scholar 

  18. Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Compact composition operators on Bergman–Orlicz spaces. Trans. Am. Math. Soc. 365(8), 3943–3970 (2013)

    Article  MathSciNet  Google Scholar 

  19. Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L.: Composition operators on Hardy–Orlicz spaces. Mem. Am. Math. Soc. 207 No. 974 (2010)

  20. Luecking, D.: Multipliers of Bergman spaces into Lebesgue spaces. Proc. Edinb. Math. Soc. 29, 125–131 (1986)

    Article  MathSciNet  Google Scholar 

  21. Pustylnik, E.: Optimal interpolation in spaces of Lorentz–Zygmund type. J. Anal. Math. 79, 113–157 (1999)

    Article  MathSciNet  Google Scholar 

  22. Rudnick, K.: Lorentz–Zygmund spaces and interpolation of weak type operators. Dissertation (Ph.D.), California Institute of Technology (1976)

  23. Shapiro, J.H.: The essential norm of a composition operator. Ann. Math. (2) 125, 375–404 (1987)

    Article  MathSciNet  Google Scholar 

  24. Stein, E.M.: Note on the class \(L\log L\). Stud. Math. 32–3, 305–310 (1969)

    Article  Google Scholar 

  25. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princetorn University Press, Princeton (1970)

    Google Scholar 

  26. Zhu, K.: Operator Theory in Function Spaces. Pure and Applied Mathematics, vol. 139. Marcel Dekker, Inc., New York (1990)

    Google Scholar 

  27. Zygmund, A.: Trigonometric Series, vol. II. Cambridge University Press (1959)

Download references

Funding

H. R. Cho was supported by NRF of Korea (NRF-2020R1F1A1A01048601), H. Koo was supported by NRF of Korea (NRF-2022R1F1A1063305) and Y. J. Lee was supported by NRF of Korea (NRF-2019R1I1A3A01041943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Rae Cho.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Ethical approval not applicable to this article.

Additional information

Communicated by Mieczyslaw Mastylo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H.R., Koo, H. & Lee, Y.J. From Zygmund space to Bergman–Zygmund space. Banach J. Math. Anal. 18, 58 (2024). https://doi.org/10.1007/s43037-024-00369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-024-00369-3

Keywords

Mathematics Subject Classification

Navigation