Log in

Duality for \(\alpha \)-Möbius invariant Besov spaces

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

For \(1\le p\le \infty \) and \(\alpha >0\), Besov spaces \(B^p_\alpha \) play a key role in the theory of \(\alpha \)-Möbius invariant function spaces. In some sense, \(B^1_\alpha \) is the minimal \(\alpha \)-Möbius invariant function space, \(B^2_\alpha \) is the unique \(\alpha \)-Möbius invariant Hilbert space, and \(B^\infty _\alpha \) is the maximal \(\alpha \)-Möbius invariant function space. In this paper, under the \(\alpha \)-Möbius invariant pairing and by the space \(B^\infty _\alpha \), we identify the predual and dual spaces of \(B^1_\alpha \). In particular, the corresponding identifications are isometric isomorphisms. The duality theorem via the \(\alpha \)-Möbius invariant pairing for \(B^p_\alpha \) with \(p>1\) is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and in its bibliography.

References

  1. Aleman, A., Mas, A.: Weighted conformal invariance of Banach spaces of analytic functions. J. Funct. Anal. 280, 108946 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, J., Cluenie, J., Pommerenke, Ch.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Arazy, J., Fisher, S.: The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces. Ill. J. Math. 29, 449–462 (1985)

    MATH  Google Scholar 

  4. Arazy, J., Fisher, S., Peetre, J.: Möbius invariant function spaces. J. Reine Angew. Math. 363, 110–145 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Aulaskari, R., **ao, J., Zhao, R.: On subspaces and subsets of BMOA and UBC. Analysis 15, 101–121 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, G., Zhu, K.: Actions of the Möbius group on analytic functions. Studia Math. 260, 207–228 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buckley, S., Koskela, P., Vukotić, D.: Fractional integration, differentiation, and weighted Bergman spaces. Math. Proc. Camb. Philos. Soc. 126, 369–385 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman, A.: Foundations of Modern Analysis. Dover Publications Inc, New York (1982)

    MATH  Google Scholar 

  9. Jevtić, M., Vukotić, D., Arsenović, M.: Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  10. Kaptanoğlu, H., Üreyen, A.: Möbius-invariant harmonic function spaces on the unit disc. Anal. Math. 48, 85–109 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaptanoǧlu, H., Üreyen, A.: Kelvin-Möbius-invariant harmonic function spaces on the real unit ball. J. Math. Anal. Appl. 503, 125298 (2021)

    Article  MATH  Google Scholar 

  12. Rubel, L., Timoney, R.: An extremal property of the Bloch space. Proc. Am. Math. Soc. 75, 45–49 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wulan, H., Zhu, K.: Möbius Invariant \(\cal{Q} _K\) Spaces. Springer, Cham (2017)

    Book  Google Scholar 

  14. **ao, J.: Holomorphic \(\cal{Q}\) Classes. Springer, Berlin (2001)

    Book  Google Scholar 

  15. **ao, J.: Geometric \({\cal{Q}}_p\) Functions. Birkhäuser, Basel (2006)

    Google Scholar 

  16. Zhao, R.: On a general family of function spaces. Ann. Acad. Sci. Fenn. Math. Diss. 105 (1996)

  17. Zhao, R., Zhu, K.: Theory of Bergman spaces in the unit ball of \({\mathbb{C}}^{n}\). Mém. Soc. Math. France 115 (2008)

  18. Zhu, K.: Operator Theory in Function Spaces. American Mathematical Society, Providence (2007)

    Book  MATH  Google Scholar 

  19. Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23, 1143–1177 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu, K.: Duality of Bloch spaces and norm convergence of Taylor series. Mich. Math. J. 38, 89–101 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors want to thank Professor Kehe Zhu for interesting discussions on the subject, and the referee for his/her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanlong Bao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Communicated by Mieczyslaw Mastylo.

G. Bao was supported by the National Natural Science Foundation of China (No. 12271328) and Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012117). Z. Lou and X. Zhou were supported by National Natural Science Foundation of China (No. 12071272).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, G., Lou, Z. & Zhou, X. Duality for \(\alpha \)-Möbius invariant Besov spaces. Banach J. Math. Anal. 17, 60 (2023). https://doi.org/10.1007/s43037-023-00285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-023-00285-y

Keywords

Mathematics Subject Classification

Navigation