Log in

Rearrangement inequality for the Hardy–Littlewood maximal operator

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

A rearrangement inequality for the one-dimensional uncentered Hardy–Littlewood maximal function is obtained. That is, for each \(x\in {\mathbb {R}}\), the inequality \((Mf)^*(x)\le Mf^*(x)\) holds, where \(f^*\) is the symmetric decreasing rearrangement function of f. The analogical rearrangement inequalities for high-dimensional case is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J.M.: The weak type (1,1) bounds for the maximal function associated to cubes grow to infinity with the dimension. Ann. Math. 173, 1013–1023 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aubrun, G.: Maximal inequality for high-dimensional cubes. Confluent. Math. 01(02), 169–179 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bernal, A.: A note on the one-dimensional maximal function. Proc. R. Soc. Edinb. Sect. A: Math. 111(3–4), 325–328 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C., Sharpley, R.C.: Interpolation of Operators. Academic Press, New York (1988)

    MATH  Google Scholar 

  5. Bourgain, J.: On high dimensional maximal functions associated to convex bodies. Am. J. Math. 108(6) (1986)

  6. Bourgain, J.: On the Hardy–Littlewood maximal function for the cube. Israel J. Math. 203(1), 275–293 (2014)

    Article  MathSciNet  Google Scholar 

  7. Brascamp, H.J., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17(2), 227–237 (1974)

    Article  MathSciNet  Google Scholar 

  8. Brascamp, H.J., Lieb, E.H., Luttinger, J.M., et al.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17(2), 391–401 (1974)

    Article  MathSciNet  Google Scholar 

  9. Ding, Y., Lai, X.: Weak type (1,1) behavior for the maximal operator with L1-Dini kernel. Potent. Anal. 47(2), 169–187 (2017)

    Article  Google Scholar 

  10. Deleaval, L., Guédon, O., Maurey, B.: Dimension free bounds for the Hardy–Littlewood maximal operator associated to convex sets. Ann. Facult. Sci. Toulouse: Math. 27(1), 1–198 (2018)

    Article  MathSciNet  Google Scholar 

  11. Di, W., Yan, D.Y.: Continuity of Hardy–Littlewood maximal function. Acta Math. Appl. Sin. Engl. Ser. 36(4), 982–990 (2020)

    Article  MathSciNet  Google Scholar 

  12. Grafakos, L., Kinnunen, J.: Sharp inequalities for maximal functions associated with general measures. Proc. R. Soc. Edinb. Sect. A: Math. 128(4), 717–723 (1998)

    Article  MathSciNet  Google Scholar 

  13. Grafakos, L., Montgomery-Smith, S.: Best constants for uncentred maximal functions. Bull. Lond. Math. Soc. 29(1), 60–64 (1997)

    Article  MathSciNet  Google Scholar 

  14. Grafakos, L.: Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2008)

    Google Scholar 

  15. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  16. Iakovlev, A.S., Stromberg, J.: Lower bounds for the weak type (1,1) estimate for the maximal function associated to cubes in high dimensions. Math. Res. Lett. 20(5), 907–918 (2013)

    Article  MathSciNet  Google Scholar 

  17. Lieb E.H., Loss M.: Analysis, volume 14 of Graduate Studies in Mathematics (2001)

  18. Lieb, E.H.: Sharp Constants in the Hardy–Littlewood–Sobolev and Related Inequalities, pp. 529–554. Springer, Berlin (2002)

    Google Scholar 

  19. Melas, A.D.: The best constant for the centered Hardy–Littlewood maximal inequality. Ann. Math. 157(2), 647–688 (2003)

    Article  MathSciNet  Google Scholar 

  20. Stein, E.M.: The development of square functions in the work of A. Zygmumd. Bull. Am. Math. Soc. 7(2), 359–376 (1982)

    Article  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (Grant Nos.11471039, 11271162 and 11871452).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally and significantly in writing this paper. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xudong Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Jan van Neerven.

D. Yan was supported in part by National Natural Foundation of China (Grant Nos. 11561062 and 11871452).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Yan, D., Liu, S. et al. Rearrangement inequality for the Hardy–Littlewood maximal operator. Banach J. Math. Anal. 16, 43 (2022). https://doi.org/10.1007/s43037-022-00197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-022-00197-3

Keywords

Mathematics Subject Classification

Navigation