Log in

Unveiling the Role of Artificial Intelligence (AI) in Polycystic Ovary Syndrome (PCOS) Diagnosis: A Comprehensive Review

  • Reproductive Endocrinology: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic Ovary Syndrome (PCOS) is one of the most widespread endocrine and metabolic disorders affecting women of reproductive age. Major symptoms include hyperandrogenism, polycystic ovary, irregular menstruation cycle, excessive hair growth, etc., which sometimes may lead to more severe complications like infertility, pregnancy complications and other co-morbidities such as diabetes, hypertension, sleep apnea, etc. Early detection and effective management of PCOS are essential to enhance patients' quality of life and reduce the chances of associated health complications. Artificial intelligence (AI) techniques have recently emerged as a popular methodology in the healthcare industry for diagnosing and managing complex diseases such as PCOS. AI utilizes machine learning algorithms to analyze ultrasound images and anthropometric and biochemical test result data to diagnose PCOS quickly and accurately. AI can assist in integrating different data sources, such as patient histories, lab findings, and medical records, to present a clear and complete picture of an individual's health. This information can help the physician make more informed and efficient diagnostic decisions. This review article provides a comprehensive analysis of the evolving role of AI in various aspects of the management of PCOS, with a major focus on AI-based diagnosis tools.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

Abbreviations

Ada Boost:

Adaptive Boosting

AI:

Artificial intelligence

AITAH:

Artificial Intelligence for Targeted Analysis of Histology

AMH:

Anti- mullerian hormone

ANN:

Artificial neural network

BMI:

Body Mass Index

CART:

Classification and Regression Trees

CAT boost:

Categorical Boosting

CD:

Cluster of differentiation

CGSVM:

Coarse Gaussian SVM

CNN:

Convolution Neural Network

CSVM:

Cubic SVM

DL:

Deep learning

DT:

Decision Tree

ER:

Endometrial receptivity

FGSVM:

Fine Gaussian SVM

FN:

False Negative

FP:

False Positive

FSH:

Follicle stimulating hormone

GIST:

Global Image Structure tensor

GLCM:

Grey Level Co-Occurrence Matrix

GLP-1:

Glucagon like peptide-1

IDE:

Integrated development environment

IFFOA-ANN:

Improved Fruit Fly Optimization- artificial neural network

IVF:

in vitro Fertilization

KNN:

K-Nearest Neighbor

LF:

Leavy flight

LH:

Luteinizing hormone

LR:

Logistic Regression

LSVM:

Linear SVM

MGSVM:

Medium Gaussian SVM

ML:

Machine learning

NB:

Naïve bayes

OTSU:

Operational Test Support Unit

PCA:

Principal component analysis

PCOS:

Polycystic Ovary Syndrome

QSVM:

Quadratic SVM

REF:

Recursive feature elimination

RF:

Random forest

SIFT:

Scale-Invariant Feature Transform method

SVM:

Support Vector Machine

TB:

Tongue body

TC:

Tongue coating

TN:

True Negative

TOPSIS:

TEchnique for Order of Preference by Similarity to Ideal Solution

TP:

True Positive

UCI ML:

University of California Irvine machine learning repository

USG:

Ultrasonography

WHO:

World Health Organization

WSI:

Whole slide images

XGBoot:

Extreme Gradient Booting

References

  1. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29(2):181–91.

    Article  Google Scholar 

  2. Hart R, Hickey M, Franks S. Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):671–83.

    Article  PubMed  Google Scholar 

  3. Escobar-Morreale HF, Luque-Ramírez M, San Millán JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev. 2005;26(2):251–82.

    Article  CAS  PubMed  Google Scholar 

  4. Franks S, Mccarthy MI, Hardy K. Development of polycystic ovary syndrome: involvement of genetic and environmental factors. Int J Androl. 2006;29(1):278–85.

    Article  CAS  PubMed  Google Scholar 

  5. Mukerjee N. Polycystic ovary syndrome (PCOS) symptoms, causes & treatments-a review. Int J Sci Res. 2020;9(7):1949–57.

    Google Scholar 

  6. Karjula S, Morin-Papunen L, Auvinen J, Ruokonen A, Puukka K, Franks S, Järvelin M-R, Tapanainen JS, Jokelainen J, Miettunen J. Psychological distress is more prevalent in fertile age and premenopausal women with PCOS symptoms: 15-year follow-up. J Clin Endocrinol Metab. 2017;102(6):1861–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoeger KM, Dokras A, Piltonen T. Update on PCOS: consequences, challenges, and guiding treatment. J Clin Endocrinol Metab. 2021;106(3):e1071–83.

    Article  PubMed  Google Scholar 

  8. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84.

    Article  PubMed  Google Scholar 

  9. Rotterdam E. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.

    Article  Google Scholar 

  10. Atiomo WU, Pearson S, Shaw S, Prentice A, Dubbins P. Ultrasound criteria in the diagnosis of polycystic ovary syndrome (PCOS). Ultrasound Med Biol. 2000;26(6):977–80.

    Article  CAS  PubMed  Google Scholar 

  11. Agrawal A, Ambad R, Lahoti R, Muley P, Pande P. Role of artificial intelligence in PCOS detection. J Datta Meghe Inst Scie Univ. 2022;17(2):491–4.

    Article  Google Scholar 

  12. Nsugbe E. An artificial intelligence-based decision support system for early diagnosis of polycystic ovaries syndrome. Healthc Analytics. 2023;3:100164.

    Article  Google Scholar 

  13. Anda D, Iyamah E. Comparative analysis of artificial intelligence in the diagnosis of polycystic ovary syndrome. 2022. Available online: https://www.researchgate.net/publication/366320486_Comparative_Analysis_of_Artificial_Intelligence_in_the_Diagnosis_of_Polycystic_Ovary_Syndrome

  14. Zhang K, Aslan AB. AI technologies for education: Recent research & future directions. Comput Edu: Artif Intell. 2021;2:100025.

    CAS  Google Scholar 

  15. Gandhi MK, Chaudhari C, Ghosh K. To study the challenges faced in application of artificial intelligence in automobile industry. AIP Conf Proc. 2022;2519(1):030013.

  16. Chowdhury S, Dey P, Joel-Edgar S, Bhattacharya S, Rodriguez-Espindola O, Abadie A, Truong L. Unlocking the value of artificial intelligence in human resource management through AI capability framework. Hum Resour Manag Rev. 2023;33(1):100899.

    Google Scholar 

  17. Cao L. Ai in finance: challenges, techniques, and opportunities. ACM Computing Surveys (CSUR). 2022;55(3):1–38.

    Article  Google Scholar 

  18. Oke SA. A literature review on artificial intelligence. Int J Inf Manage Sci. 2008;19(4):535–70.

    Google Scholar 

  19. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shaheen MY. Applications of artificial intelligence (AI) in healthcare: a review. ScienceOpen Preprints. 2021. https://doi.org/10.14293/S2199-1006.1.SOR-.PPVRY8K.v1.

  21. Chen Z, Wang Z, Du M, Liu Z. Artificial intelligence in the assessment of female reproductive function using ultrasound: A review. J Ultrasound Med. 2022;41(6):1343–53.

    Article  PubMed  Google Scholar 

  22. Wang R, Pan W, ** L, Li Y, Geng Y, Gao C, Chen G, Wang H, Ma D, Liao S. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Srinivasa Rao AS, Diamond MP. Deep learning of Markov model-based machines for determination of better treatment option decisions for infertile women. Reprod Sci. 2020;27:763–70.

    Article  PubMed  Google Scholar 

  24. Cheredath A, Uppangala S, C SA, Jijo A, Kumar P, Joseph D, Ga NG, Kalthur G, Adiga SK. Combining machine learning with metabolomic and embryologic data improves embryo implantation prediction. Reprod Sci. 2023;30(3):984–94.

    Article  CAS  PubMed  Google Scholar 

  25. Nilofer N. Follicles classification to detect polycystic ovary syndrome using GLCM and novel hybrid machine learning. Turk J Comput Math Educ (TURCOMAT). 2021;12(7):1062–73.

    Google Scholar 

  26. Alamoudi A, Khan IU, Aslam N, Alqahtani N, Alsaif HS, Al Dandan O, Al Gadeeb M, Al Bahrani R. A deep learning fusion approach to diagnosis the polycystic ovary syndrome (PCOS). Appl Comput Intell Soft Comput. 2023;2023:1–5.

    Google Scholar 

  27. Elmannai H, El-Rashidy N, Mashal I, Alohali MA, Farag S, El-Sappagh S, Saleh H. polycystic ovary syndrome detection machine learning model based on optimized feature selection and explainable artificial intelligence. Diagnostics. 2023;13(8):1506.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Khanna VV, Chadaga K, Sampathila N, Prabhu S, Bhandage V, Hegde GK. A distinctive explainable machine learning framework for detection of polycystic ovary syndrome. Appl System Innovation. 2023;6(2):32.

    Article  Google Scholar 

  29. Barrera FJ, Brown ED, Rojo A, Obeso J, Plata H, Lincango EP, Terry N, Rodríguez-Gutiérrez R, Hall JE, Shekhar S. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: a systematic review. Front Endocrinol. 2023;14:1106625.

    Article  Google Scholar 

  30. Suha SA, Islam MN. An extended machine learning technique for polycystic ovary syndrome detection using ovary ultrasound image. Sci Rep. 2022;12(1):17123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isah OR, Usman A, Tekanyi A. A review on computer-assisted follicle detection techniques and polycystic ovarian syndrome (PCOS) diagnostic systems. International Journal of Computer Trends and Technology. 2015;28(1). http://repository.futminna.edu.ng:8080/jspui/handle/123456789/7379

  32. Tilly JL. Ovarian follicle counts–not as simple as 1, 2, 3. Reprod Biol Endocrinol. 2003;1:1–4.

    Article  Google Scholar 

  33. Liu S, Wang Y, Yang X, Lei B, Liu L, Li S. Deep learning in medical ultrasound analysis: a review. Engineering. 2019;5:261–75.

    Article  Google Scholar 

  34. Nabilah A, Sigit R, Harsono T, Anwar A. Classification of ovarian cysts on ultrasound images using watershed segmentation and contour analysis. In: 2020 international electronics symposium (IES). 2020. pp. 513–9. https://doi.org/10.1109/IES50839.2020.9231695.

  35. Srivastava S, Kumar P, Chaudhry V, Singh A. Detection of ovarian cyst in ultrasound images using fine-tuned VGG-16 deep learning network. SN Comput Sci. 2020;1:1–8.

    Article  Google Scholar 

  36. Maheswari K, Baranidharan T, Karthik S, Sumathi T. Modelling of F3I based feature selection approach for PCOS classification and prediction. J Ambient Intell Humaniz Comput. 2021;12:1349–62.

    Article  Google Scholar 

  37. Rachana B, Priyanka T, Sahana K, Supritha T, Parameshachari B, Sunitha R. Detection of polycystic ovarian syndrome using follicle recognition technique. Glob Transit Proc. 2021;2(2):304–8.

    Article  Google Scholar 

  38. Gopalakrishnan C, Iyapparaja M. Detection of polycystic ovary syndrome from ultrasound images using SIFT descriptors. Bonfring Int J Softw Eng Soft Comput. 2019;9(2):26–30.

    Article  Google Scholar 

  39. Gopalakrishnan C, Iyapparaja M. Active contour with modified Otsu method for automatic detection of polycystic ovary syndrome from ultrasound image of ovary. Multimed Tools Appl. 2020;79:17169–92.

    Article  Google Scholar 

  40. Gopalakrishnan C, Iyapparaja M. Multilevel thresholding based follicle detection and classification of polycystic ovary syndrome from the ultrasound images using machine learning. Int J Syst Assur Eng Manag. 2021;1–8. https://doi.org/10.1007/s13198-021-01203-x.

  41. Soni P, Vashisht S. Image segmentation for detecting polycystic ovarian disease using deep neural networks. Int J Comput Sci Eng. 2019;7(3):534–7.

    Google Scholar 

  42. Kiruthika V, Sathiya S, Ramya M. Machine learning based ovarian detection in ultrasound images. Int J Adv Mechatronic Syst. 2020;8(2–3):75–85.

    Article  Google Scholar 

  43. Sumathi M, Chitra P, Prabha RS, Srilatha K. Study and detection of PCOS related diseases using CNN. IOP Conf Ser: Mater Sci Eng. 2021;1070:012062 (IOP Publishing).

    Article  Google Scholar 

  44. Dewi R, Adiwijaya, Wisesty U, Jondri. Classification of polycystic ovary based on ultrasound images using competitive neural network. J Phys: Conf Ser. 2018;971:012005 (IOP Publishing).

    Google Scholar 

  45. Cheng JJ, Mahalingaiah S. Data mining polycystic ovary morphology in electronic medical record ultrasound reports. Fertil Res Pract. 2019;5(1):1–7.

    Article  Google Scholar 

  46. Roy DG and Alvi P. Artificial Intelligence in Diagnosis of Polycystic Ovarian Syndrome. In: Sarma HKD, Balas VE, Bhuyan B, Dutta N, editors. Contemporary Issues in Communication, Cloud and Big Data Analytics: Proceedings of CCB 2020. Singapore: Springer, 2020. pp. 453–463.

  47. Hassan MM, Mirza T. Comparative analysis of machine learning algorithms in diagnosis of polycystic ovarian syndrome. Int J Comput Appl. 2020;975:8887.

    Google Scholar 

  48. Tiwari S, Kane L, Koundal D, Jain A, Alhudhaif A, Polat K, Zaguia A, Alenezi F, Althubiti SA. SPOSDS: A smart Polycystic Ovary Syndrome diagnostic system using machine learning. Expert Syst Appl. 2022;203:117592.

    Article  Google Scholar 

  49. Ahmetašević A, Aličelebić L, Bajrić B, Bečić E, Smajović A, Deumić A. Using artificial neural network in diagnosis of polycystic ovary syndrome. In: 2022 11th Mediterranean conference on embedded computing (MECO). 2022. pp. 1–4. https://doi.org/10.1109/MECO55406.2022.9797204.

  50. Bharati S, Podder P, Mondal MRH. Diagnosis of polycystic ovary syndrome using machine learning algorithms. In: 2020 IEEE region 10 symposium (TENSYMP). 2020. pp. 1486–9. https://doi.org/10.1109/TENSYMP50017.2020.9230932.

  51. Chauhan P, Patil P, Rane N, Raundale P, Kanakia H. Comparative analysis of machine learning algorithms for prediction of PCOS. In: 2021 international conference on communication information and computing technology (ICCICT). 2021. pp. 1–7. https://doi.org/10.1109/ICCICT50803.2021.9510128

  52. Mehrotra P, Chatterjee J, Chakraborty C, Ghoshdastidar B, Ghoshdastidar S. Automated screening of polycystic ovary syndrome using machine learning techniques. In: 2011 annual IEEE India conference. 2011. pp. 1–5. https://doi.org/10.1109/INDCON.2011.6139331

  53. Denny A, Raj A, Ashok A, Ram CM, George R. i-HOPE: detection and prediction system for polycystic ovary syndrome (PCOS) using machine learning techniques. In: TENCON 2019–2019 IEEE region 10 conference (TENCON). 2019. pp. 673–8. https://doi.org/10.1109/TENCON.2019.8929674

  54. Zhang X, Liang B, Zhang J, Hao X, Xu X, Chang H-M, Leung PC, Tan J. Raman spectroscopy of follicular fluid and plasma with machine-learning algorithms for polycystic ovary syndrome screening. Mol Cell Endocrinol. 2021;523:111139.

    Article  CAS  PubMed  Google Scholar 

  55. Thakre V, Vedpathak S, Thakre K, Sonawani S. PCOcare: PCOS detection and prediction using machine learning algorithms. Biosci Biotechnol Res Commun. 2020;13(14):240–4.

    Article  Google Scholar 

  56. Kangasniemi MH, Komsi EK, Rossi H-R, Liakka A, Khatun M, Chen JC, Paulson M, Hirschberg AL, Arffman RK, Piltonen TT. Artificial intelligence deep learning model assessment of leukocyte counts and proliferation in endometrium from women with and without polycystic ovary syndrome. FS Sci. 2022;3(2):174–86.

    Google Scholar 

  57. Zhang X, Xu Y, Fu L, Li D, Dai X, Liu L, Zhang J, Zheng L, Cui M. Identification of mRNAs related to endometrium function regulated by lncRNA CD36–005 in rat endometrial stromal cells. Reprod Biol Endocrinol. 2018;16(1):1–11.

    Article  Google Scholar 

  58. Shang K, Jia X, Qiao J, Kang J, Guan Y. Endometrial abnormality in women with polycystic ovary syndrome. Reprod Sci. 2012;19(7):674–83.

    Article  PubMed  Google Scholar 

  59. Barry JA, Azizia MM, Hardiman PJ. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(5):748–58.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Palomba S, De Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–92.

    Article  PubMed  Google Scholar 

  61. Piltonen TT. Polycystic ovary syndrome: endometrial markers. Best Pract Res Clin Obstet Gynaecol. 2016;37:66–79.

    Article  PubMed  Google Scholar 

  62. Lee S, Arffman R, Komsi E, Lindgren O, Kemppainen J, Metsola H, Ahtikoski A, Kask K, Saare M, Salumets A. P-625 Artificial intelligence-enabled analysis of endometrial CD138 positive plasma cells in infertility-associated conditions; Polycystic ovary syndrome (PCOS) and recurrent implantation failure (RIF). Human Reproduction. 2023;38((Supplement_1)):dead093-953.

    Google Scholar 

  63. Sivajohan B, Elgendi M, Menon C, Allaire C, Yong P, Bedaiwy MA. Clinical use of artificial intelligence in endometriosis: a sco** review. NPJ Digital Medicine. 2022;5(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Downing MJ, Papke DJ Jr, Tyekucheva S, Mutter GL. A new classification of benign, premalignant, and malignant endometrial tissues using machine learning applied to 1413 candidate variables. Int J Gynecol Pathol: Off J Int Soc Gynecol Pathol. 2020;39(4):333.

    Article  Google Scholar 

  65. Papke DJ Jr, Lohmann S, Downing M, Hufnagl P, Mutter GL. Computational augmentation of neoplastic endometrial glands in digital pathology displays. J Pathol. 2021;253(3):258–67.

    Article  CAS  PubMed  Google Scholar 

  66. Wang W, Zeng W, He S, Shi Y, Chen X, Tu L, Yang B, Xu J, Yin X. A new model for predicting the occurrence of polycystic ovary syndrome: Based on data of tongue and pulse. Digital Health. 2023;9:20552076231160324.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lv W, Song Y, Fu R, Lin X, Su Y, ** X, Yang H, Shan X, Du W, Huang Q. Deep learning algorithm for automated detection of polycystic ovary syndrome using scleral images. Front Endocrinol. 2022;12:789878.

    Article  Google Scholar 

  68. Kodipalli A, Devi S. Prediction of PCOS and mental health using fuzzy inference and SVM. Front Public Health. 2021;9:789569.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kaur R, Kumar R, Gupta M. Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial intelligence. Endocrine. 2022;78(3):458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. LaValley MP. Logistic regression. Circulation. 2008;117(18):2395–9.

    Article  PubMed  Google Scholar 

  71. Song Y-Y, Ying L. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015;27(2):130.

    PubMed  PubMed Central  Google Scholar 

  72. Suthaharan S. Support vector machine. In: Machine learning models and algorithms for big data classification: thinking with examples for effective learning. Integrated Series in Information Systems, vol 36. Boston: Springer: 2016. pp. 207–235.

  73. Webb GI, Keogh E, Miikkulainen R. Naïve Bayes. Encycl Mach Learn. 2010;15(1):713–4.

    Google Scholar 

  74. Rigatti SJ. Random forest. J Insur Med. 2017;47(1):31–9.

    Article  PubMed  Google Scholar 

  75. Inan MSK, Ulfath RE, Alam FI, Bappee FK, Hasan R. Improved sampling and feature selection to support extreme gradient boosting for PCOS diagnosis. In: 2021 IEEE 11th annual computing and communication workshop and conference (CCWC). 2021. pp. 1046–50. https://doi.org/10.1109/CCWC51732.2021.9375994.

  76. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T. Xgboost: extreme gradient boosting. R Packag Vers. 2015;1(4):1–4.

    Google Scholar 

  77. Jabeen A, Yamini V, Amberina AR, Eshwar MD, Vadakedath S, Begum GS, Kandi V. Polycystic ovarian syndrome: prevalence, predisposing factors, and awareness among adolescent and young girls of South India. Cureus. 2022;14(8). https://doi.org/10.7759/cureus.27943.

  78. Verma P, Kushwaha H, Singh H. Artificial Intelligence in Healthcare: Inherent Biases and Concerns. In: Artificial Intelligence and Machine Learning in Healthcare. Springer; 2023. p. 179–87.

    Chapter  Google Scholar 

  79. Amann J, Blasimme A, Vayena E, Frey D, Madai VI; Precise4Q Consortium. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med Informa Decis Making. 2020;20(1):310.

Download references

Acknowledgements

NA.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taruna Arora.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Maan, P., Gautam, R. et al. Unveiling the Role of Artificial Intelligence (AI) in Polycystic Ovary Syndrome (PCOS) Diagnosis: A Comprehensive Review. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01615-7

Keywords

Navigation