Log in

Multi-UAV Networks for Disaster Monitoring: Challenges and Opportunities from a Network Perspective

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Disasters, whether natural or man-made, necessitate swift and comprehensive responses. Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become indispensable in disaster scenarios, serving as vital communication relays in areas with compromised infrastructure. These UAVs establish temporary networks, facilitating coordination among emergency responders and ensuring timely assistance to survivors. Despite recent advancements in sensing technology, challenges persist in deploying these networks for disaster monitoring applications. This article addresses these challenges by exploring various aspects in the context of multi-UAV networks for disaster monitoring. To provide a clearer motivation for this exploration, we emphasize the critical role that a well-designed network infrastructure plays in enhancing disaster response efforts. We delve into the complexities of formation and control strategies, aiming to optimize the agility and effectiveness of UAV networks. Additionally, we examine communication protocols, data routing mechanisms, and security considerations to highlight the intricacies involved in deploying UAVs for disaster monitoring. This article also underscores the significance of its contributions to the existing literature by providing a survey of the state-of-the art studies and illuminates the potential of leveraging emerging technologies, such as edge computing and artificial intelligence, to bolster performance and security. The article concludes by providing a detailed overview of the key challenges and open issues, outlining various research prospects in the evolving field of multi-UAV networks for disaster response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cred, Ucl I. UNDRR Centre for Research on the Epidemiology of Disasters (CRED). Disaster Year in Review 2020 Global Trends and Perspectives. Cred vol. May (62):2020–2021; 2021 [Online]. https://www.cred.be/index.php?q=work-with-us%0Ahttps://cred.be/sites/default/files/CredCrunch62.pdf.

  2. Micheletto M, et al. Flying real-time network to coordinate disaster relief activities in urban areas. Sensors (Switz). 2018;18(5):1–20. https://doi.org/10.3390/s18051662.

    Article  Google Scholar 

  3. Boursianis AD, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: a comprehensive review. Internet Things (Neth). 2022;18:100187. https://doi.org/10.1016/j.iot.2020.100187.

    Article  Google Scholar 

  4. Aggarwal S, Kumar N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput Commun. 2020;149:270–99. https://doi.org/10.1016/j.comcom.2019.10.014.

    Article  Google Scholar 

  5. McEnroe P, Wang S, Liyanage M. A survey on the convergence of edge computing and AI for UAVs: opportunities and challenges. IEEE Internet Things J. 2022;9(17):15435–59. https://doi.org/10.1109/JIOT.2022.3176400.

    Article  Google Scholar 

  6. Luo C, Miao W, Ullah H, McClean S, Parr G, Min G. Unmanned aerial vehicles for disaster management. Geol Disaster Monit Based Sens Netw. 2019. https://doi.org/10.1007/978-981-13-0992-2_7.

    Article  Google Scholar 

  7. Deepak DC, Ladas A, Sambo YA, Pervaiz H, Politis C, Imran MA. An overview of post-disaster emergency communication systems in the future networks. IEEE Wirel Commun. 2019;26(6):132–9. https://doi.org/10.1109/MWC.2019.1800467.

    Article  Google Scholar 

  8. Shakhatreh H, et al. Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access. 2019;7:48572–634. https://doi.org/10.1109/ACCESS.2019.2909530.

    Article  Google Scholar 

  9. Jahir Y, Atiquzzaman M, Refai H, Paranjothi A, LoPresti PG. Routing protocols and architecture for disaster area network: a survey. Ad Hoc Netw. 2019;82:1–14. https://doi.org/10.1016/j.adhoc.2018.08.005.

    Article  Google Scholar 

  10. Hentati AI, Fourati LC. Comprehensive survey of UAVs communication networks. Comput Stand Interfaces. 2020;72:103451. https://doi.org/10.1016/j.csi.2020.103451.

    Article  Google Scholar 

  11. Garnica-Peña RJ, Alcántara-Ayala I. The use of UAVs for landslide disaster risk research and disaster risk management: a literature review. J Mt Sci. 2021;18(2):482–98. https://doi.org/10.1007/s11629-020-6467-7.

    Article  Google Scholar 

  12. Matracia M, Saeed N, Kishk MA, Alouini MS. Post-disaster communications: enabling technologies, architectures, and open challenges. IEEE Open J Commun Soc. 2022;3(June):1177–205. https://doi.org/10.1109/OJCOMS.2022.3192040.

    Article  Google Scholar 

  13. Javaid S, et al. Communication and control in collaborative UAVs: recent advances and future trends. IEEE Trans Intell Transp Syst. 2023;24(6):5719–39. https://doi.org/10.1109/TITS.2023.3248841.

    Article  Google Scholar 

  14. Bekmezci I, Sahingoz OK, Temel Ş. Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 2013;11(3):1254–70. https://doi.org/10.1016/J.ADHOC.2012.12.004.

    Article  Google Scholar 

  15. Nasr I, Chekir M, Besbes H. Shipwrecked victims localization and tracking using UAVs. In: 2019 15th international wireless communications & mobile computing conference IWCMC. 2019;2019:1344–8. https://doi.org/10.1109/IWCMC.2019.8766534.

  16. Chen S, Guo S, Li Y. Real-time tracking a ground moving target in complex indoor and outdoor environments with UAV. In: 2016 IEEE international conference on information and automation IEEE ICIA. 2017;2016(August):362–7. https://doi.org/10.1109/ICInfA.2016.7831851.

  17. Albert A, Imsland L. Performance bounds for tracking multiple objects using a single UAV. In: 2017 Int. Conf Unmanned Aircr Syst ICUAS. 2017;2017:1539–46. https://doi.org/10.1109/ICUAS.2017.7991440.

  18. Yue L, QingYang C, Sheng X, ** HZ. A fast target localization method with multi-point observation for a single UAV. In2016 Chinese Control and Decision Conference (CCDC) 2016, pp. 5389–5394. IEEE. https://doi.org/10.1109/CCDC.2016.7531961.

  19. Skorobogatov G, Barrado C, Salamí E. Multiple UAV systems: a survey. Unmanned Syst. 2020;8(2):149–69. https://doi.org/10.1142/S2301385020500090.

    Article  Google Scholar 

  20. Esrafilian O, Gangula R, Gesbert D. Autonomous UAV-aided mesh wireless networks. In: IEEE INFOCOM 2020-IEEE conference on computer communications workshops (INFOCOM WKSHPS); 2020, pp. 634-640. IEEE. https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162753

  21. Portmann M, Pirzada AA. Wireless mesh networks for public safety and crisis management applications. IEEE Eng Manag Rev. 2011;39(4):114–22. https://doi.org/10.1109/EMR.2011.6093893.

    Article  Google Scholar 

  22. Dey S, Ray S. Ad-hoc networked UAVs as aerial mesh network for disaster management application and remote sensing: an approach; 2017, pp. 301–304.

  23. Ganesh S, Gopalasamy V, Shibu NS. Architecture for drone assisted emergency ad-hoc network for disaster rescue operations. In: 2021 international conference on communication systems & networks (COMSNETS); 2021, vol. 2061. pp. 44–49. IEEE. https://doi.org/10.1109/COMSNETS51098.2021.9352814.

  24. Ueyama J, et al. Exploiting the use of unmanned aerial vehicles to provide resilience in wireless sensor networks. IEEE Commun Mag. 2014;52(12):81–7. https://doi.org/10.1109/MCOM.2014.6979956.

    Article  Google Scholar 

  25. Çeltek SA, Durdu A, Kurnaz E. Design and simulation of the hierarchical tree topology based wireless drone networks. In: 2018 international conference on artificial intelligence and data processing (IDAP); 2018, pp. 1–5. IEEE.https://doi.org/10.1109/IDAP.2018.8620755.

  26. Chen H, Wang X, Shen L, Cong Y. Formation flight of fixed-wing UAV swarms: a group-based hierarchical approach. Chin J Aeronaut. 2021;34(2):504–15. https://doi.org/10.1016/j.cja.2020.03.006.

    Article  Google Scholar 

  27. Uddin MA, Mansour A, Le Jeune D, Ayaz M, Aggoune EHM. UAV-assisted dynamic clustering of wireless sensor networks for crop health monitoring. Sensors. 2018;18(2):555. https://doi.org/10.3390/S18020555.

    Article  Google Scholar 

  28. Bupe P, Haddad R, Rios-Gutierrez F. Relief and emergency communication network based on an autonomous decentralized UAV clustering network. In: Conference proceedings—IEEE SOUTHEASTCON 2015; pp. 1-8. IEEE. https://doi.org/10.1109/SECON.2015.7133027.

  29. Zobel J, Lieser P, Drescher B, Freisleben B, Steinmetz R. Optimizing inter-cluster flights of post-disaster communication support UAVs. In: Proceedings conference local computer networks, LCN 2019; 2019-Octob. pp 364–371. https://doi.org/10.1109/LCN44214.2019.8990801.

  30. Joshi A, Dhongdi S, Kumar S, Anupama KR. Simulation of multi-UAV ad-hoc network for disaster monitoring applications. In: International conference on information networking; 2020 vol. 2020-Janua, pp. 690–695. https://doi.org/10.1109/ICOIN48656.2020.9016543.

  31. Ramesh MV. Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw. 2014;13:2–18. https://doi.org/10.1016/J.ADHOC.2012.09.002.

    Article  Google Scholar 

  32. Al-Hourani A, Kandeepan S, Lardner S. Optimal LAP altitude for maximum coverage. IEEE Wirel Commun Lett. 2014;3(6):569–72. https://doi.org/10.1109/LWC.2014.2342736.

    Article  Google Scholar 

  33. Mozaffari M, Saad W, Bennis M, Debbah M. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun Lett. 2016;20(8):1647–50. https://doi.org/10.1109/LCOMM.2016.2578312.

    Article  Google Scholar 

  34. Alzenad M, El-Keyi A, Lagum F, Yanikomeroglu H. 3-D Placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wirel Commun Lett. 2017;6(4):434–7. https://doi.org/10.1109/LWC.2017.2700840.

    Article  Google Scholar 

  35. Dong C, **e J, Dai H, Wu Q, Qin Z, Feng Z. Optimal deployment density for maximum coverage of drone small cells. China Commun. 2018;15(5):25–40. https://doi.org/10.1109/CC.2018.8387984.

    Article  Google Scholar 

  36. Zhao H, Wang H, Wu W, Wei J. Deployment algorithms for UAV airborne networks toward on-demand coverage. IEEE J Sel Areas Commun. 2018;36(9):2015–31. https://doi.org/10.1109/JSAC.2018.2864376.

    Article  Google Scholar 

  37. Lyu J, Zeng Y, Zhang R, Lim TJ. Placement optimization of UAV-mounted mobile base stations. IEEE Commun Lett. 2017;21(3):604–7. https://doi.org/10.1109/LCOMM.2016.2633248.

    Article  Google Scholar 

  38. Zhang X, Duan L. Optimization of emergency UAV deployment for providing wireless coverage. In: 2017 IEEE global communications conference GLOBECOM 2017—proceedings, 2017; 2018-Janua, pp. 1–6. https://doi.org/10.1109/GLOCOM.2017.8254659.

  39. Malandrino F, Chiasserini CF, Casetti C, Chiaraviglio L, Senacheribbe A. Planning UAV activities for efficient user coverage in disaster areas. Ad Hoc Netw. 2019;89:177–85. https://doi.org/10.1016/j.adhoc.2019.04.001.

    Article  Google Scholar 

  40. Busnel Y, Caillouet C, Coudert D. Self-organized disaster management system by distributed deployment of connected UAVs. In: 6th international conference on information and communication technologies for disaster management. ICT-DM 2019; 2019. https://doi.org/10.1109/ICT-DM47966.2019.9032964.

  41. Wang Z, Duan L, Zhang R. Adaptive deployment for UAV-aided communication networks. IEEE Trans Wirel Commun. 2019;18(9):4531–43. https://doi.org/10.1109/TWC.2019.2926279.

    Article  Google Scholar 

  42. Panda KG, Das S, Sen D, Arif W. Design and deployment of UAV-aided post-disaster emergency network. IEEE Access. 2019;7:102985–99. https://doi.org/10.1109/ACCESS.2019.2931539.

    Article  Google Scholar 

  43. Hydher H, Jayakody DNK, Hemachandra KT, Samarasinghe T. Intelligent UAV deployment for a disaster-resilient wireless network. Sensors (Switz). 2020;20(21):1–18. https://doi.org/10.3390/s20216140.

    Article  Google Scholar 

  44. ** W, Yang J, Fang Y, Feng W. Research on application and deployment of UAV in emergency response. In: ICEIEC 2020—Proceedings 2020 IEEE 10th international conference on electronics information and emergency communication; 2020, pp. 277–280. https://doi.org/10.1109/ICEIEC49280.2020.9152338.

  45. Masroor R, Naeem M, Ejaz W. Efficient deployment of UAVs for disaster management: a multi-criterion optimization approach. Comput Commun. 2021;177:185–94. https://doi.org/10.1016/J.COMCOM.2021.07.006.

    Article  Google Scholar 

  46. Lin N, Liu Y, Zhao L, Wu DO, Wang Y. An adaptive UAV deployment scheme for emergency networking. IEEE Trans Wirel Commun. 2022;21(4):2383–98. https://doi.org/10.1109/TWC.2021.3111991.

    Article  Google Scholar 

  47. Liu CH, Ma X, Gao X, Tang J. Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning. IEEE Trans Mob Comput. 2020;19(6):1274–85. https://doi.org/10.1109/TMC.2019.2908171.

    Article  Google Scholar 

  48. Gupta M, Varma S. Optimal placement of UAVs of an aerial mesh network in an emergency situation. J Ambient Intell Humaniz Comput. 2021;12(1):343–58. https://doi.org/10.1007/s12652-020-01976-2.

    Article  Google Scholar 

  49. Rahimi Z, et al. An efficient 3-D positioning approach to minimize required UAVs for IoT network coverage. IEEE Internet Things J. 2022;9(1):558–71. https://doi.org/10.1109/JIOT.2021.3084521.

    Article  Google Scholar 

  50. Caillouet C, Razafindralambo T. Efficient deployment of connected unmanned aerial vehicles for optimal target coverage. In: 2017 global information infrastructure and networking symposium GIIS 2017, vol. 2017-Decem; 2017. pp. 1–8. https://doi.org/10.1109/GIIS.2017.8169803.

  51. Sun S, Zhang G, Mei H, Wang K, Yang K. Optimizing multi-UAV deployment in 3-D space to minimize task completion time in UAV-enabled mobile edge computing systems. IEEE Commun Lett. 2021;25(2):579–83. https://doi.org/10.1109/LCOMM.2020.3029144.

    Article  Google Scholar 

  52. Masroor R, Naeem M, Ejaz W. Efficient deployment of UAVs for disaster management: a multi-criterion optimization approach. Comput Commun. 2021;177(June):185–94. https://doi.org/10.1016/j.comcom.2021.07.006.

    Article  Google Scholar 

  53. Peer M, Bohara VA, Srivastava A. Multi-UAV placement strategy for disaster-resilient communication network. In: IEEE vehicular technology conference; 2020, vol. 2020. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348687.

  54. Namvar N, Homaifar A, Karimoddini A, Maham B. Heterogeneous UAV cells: an effective resource allocation scheme for maximum coverage performance. IEEE Access. 2019;7:164708–19. https://doi.org/10.1109/ACCESS.2019.2948822.

    Article  Google Scholar 

  55. Bani M, Alhuda N. Flying ad-hoc networks: routing protocols, mobility models, issues. Int J Adv Comput Sci Appl. 2016;7(6):162–9. https://doi.org/10.14569/ijacsa.2016.070621.

    Article  Google Scholar 

  56. Wang W, Guan X, Wang B, Wang Y. A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Inf Sci (Ny). 2010;180(3):399–413. https://doi.org/10.1016/j.ins.2009.10.001.

    Article  Google Scholar 

  57. Kuiper E, Nadjm-Tehrani S. Mobility models for UAV group reconnaissance applications. In: Second international conference on wireless and mobile communications. ICWMC 2006; 2006 no. c, pp. 2–8. https://doi.org/10.1109/ICWMC.2006.63.

  58. **e J, Wan Y, Wang B, Fu S, Lu K, Kim JH. A comprehensive 3-dimensional random mobility modeling framework for airborne networks. IEEE Access. 2018;6:22849–62. https://doi.org/10.1109/ACCESS.2018.2819600.

    Article  Google Scholar 

  59. Sánchez-García J, García-Campos JM, Toral SL, Reina DG, Barrero F. A self organising aerial ad hoc network mobility model for disaster scenarios. In: Proceeding-2015 international conference on developments of eSystems Eng. DeSE 2015; 2016, pp. 35–40. https://doi.org/10.1109/DeSE.2015.12.

  60. Mi J, Dai Z. A 3D smooth mobility model based on semi-random circular movement for FANETs. In: 2021 7th international conference on computer and communications ICCC. 2021;2021, pp. 954–9. https://doi.org/10.1109/ICCC54389.2021.9674424.

  61. Messous MA, Senouci SM, Sedjelmaci H. Network connectivity and area coverage for UAV fleet mobility model with energy constraint. In: IEEE wireless communications and networking conference WCNC; 2016; vol. 2016-Septe, no. Wcnc, pp. 1–6 https://doi.org/10.1109/WCNC.2016.7565125.

  62. Azmi IN, Yussoff YM, Kassim M, Tahir NM. A mini-review of flying ad hoc networks mobility model for disaster areas. Int Trans J Eng. 2021;12(10):1–12. https://doi.org/10.14456/ITJEMAST.2021.191.

    Article  Google Scholar 

  63. Sahingoz OK. Networking models in flying Ad-hoc networks (FANETs): concepts and challenges. J Intell Robot Syst Theory Appl. 2014;74(1–2):513–27. https://doi.org/10.1007/s10846-013-9959-7.

    Article  Google Scholar 

  64. Aschenbruck N, Gerhards-Padilla E, Gerharz M, Frank M, Martini P. Modelling mobility in disaster area scenarios. In: MSWiM’07 proceedings of the tenth ACM Symposium on Modeling, analysis, and simulation of wireless and mobile systems; 2007. pp. 4–12. https://doi.org/10.1145/1298126.1298131.

  65. Pomportes S, Tomasik J, Vèque V. A composite mobility model for ad hoc networks in disaster areas. REV J Electron Commun. 2011;1(1):62–8. https://doi.org/10.21553/rev-jec.10.

    Article  Google Scholar 

  66. Conceição L, Curado M. Modelling mobility based on human behaviour in disaster areas. In: Lecture notes in computer science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics); 2013, pp. 56–69, vol. 7889 LNCS. https://doi.org/10.1007/978-3-642-38401-1_5.

  67. Wang N, Di N, Dai F, Liu F. UAV 3D mobility model oriented to dynamic and uncertain environment, vol 11336 LNCS. Springer International Publishing; 2018. https://doi.org/10.1007/978-3-030-05057-3_48.

  68. Mahiddin NA, Affandi FFM, Mohamad Z. A review on mobility models in disaster area scenario. Int J Adv Technol Eng Explor. 2021;8(80):848–73. https://doi.org/10.19101/IJATEE.2021.874084.

    Article  Google Scholar 

  69. Khan MA, Qureshi IM, Khanzada F. A hybrid communication scheme for efficient and low-cost deployment of future flying ad-hoc network (FANET). Drones. 2019;3(16):16. https://doi.org/10.3390/DRONES3010016.

    Article  Google Scholar 

  70. Acosta-Coll M, Solano-Escorcia A, Ortega-Gonzalez L, Zamora-Musa R. Forecasting and communication key elements for low-cost fluvial flooding early warning system in urban areas. Int J Electr Comput Eng. 2021;11(5):4143–56. https://doi.org/10.11591/ijece.v11i5.pp4143-4156.

    Article  Google Scholar 

  71. Avanzato R, Beritelli F. An innovative technique for identification of missing persons in natural disaster based on drone-femtocell systems. Sensors Switz. 2019;19(20):4547. https://doi.org/10.3390/s19204547.

    Article  Google Scholar 

  72. Mekki K, Bajic E, Chaxel F, Meyer F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express. 2019;5(1):1–7. https://doi.org/10.1016/j.icte.2017.12.005.

    Article  Google Scholar 

  73. Harrington P, Ng WP, Binns R. Autonomous drone control within a Wi-Fi network. In: 2020 12th international symposium on communication systems, networks and digital signal processing CSNDSP 2020; 2020. https://doi.org/10.1109/CSNDSP49049.2020.9249585.

  74. Hayat S, Yanmaz E, Bettstetter C. Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11n and 802.11ac. In: IEEE international symposium on personal, indoor, and mobile radio communications. PIMRC, vol 2015-Decem, pp. 1991–1996; 2015. https://doi.org/10.1109/PIMRC.2015.7343625.

  75. Gu Y, Zhou M, Fu S, Wan Y. Airborne WiFi networks through directional antennae: an experimental study. In: 2015 IEEE wireless communications and networking conference WCNC. 2015;2015:1314–9. https://doi.org/10.1109/WCNC.2015.7127659

  76. Stellin M, Sabino S, Grilo A. LoRaWAN networking in mobile scenarios using a WiFi mesh of UAV gateways. Electron. 2020;9(4):1–20. https://doi.org/10.3390/electronics9040630.

    Article  Google Scholar 

  77. Sharma V, You I, Pau G, Collotta M, Lim JD, Kim JN. LoRaWAN-based energy-efficient surveillance by drones for intelligent transportation systems. Energies. 2018;11(3):573. https://doi.org/10.3390/en11030573.

    Article  Google Scholar 

  78. Saraereh OA, Alsaraira A, Khan I, Uthansakul P. Performance evaluation of UAV-enabled LoRa networks for disaster management applications. Sensors (Switz). 2020;20(8):1–18. https://doi.org/10.3390/s20082396.

    Article  Google Scholar 

  79. Rahmadhani A, Isswandhana R, Giovani A, Syah RA. LoRaWAN as secondary telemetry communication system for drone delivery. In: Proceedings—2018 IEEE international conference on internet of things and intelligence system IOTAIS 2018; 2018, pp. 116–122. https://doi.org/10.1109/IOTAIS.2018.8600892.

  80. Morgenthaler S, Braun T, Zhao Z, Staub T, Anwander M. UAVNet: a mobile wireless mesh network using unmanned aerial vehicles, 2012. In: IEEE Globecom Work. GC Wkshps. 2012;2012:1603–8. https://doi.org/10.1109/GLOCOMW.2012.6477825.

  81. Davoli L, Pagliari E, Ferrari G. Hybrid LoRa-IEEE 802.11s opportunistic mesh networking for flexible UAV swarming. Drones. 2021;5(2):26. https://doi.org/10.3390/drones5020026.

    Article  Google Scholar 

  82. Li J, et al. Joint optimization on trajectory, altitude, velocity, and link scheduling for minimum mission time in UAV-aided data collection. IEEE Internet Things J. 2020;7(2):1464–75. https://doi.org/10.1109/JIOT.2019.2955732.

    Article  Google Scholar 

  83. Kurt A, Saputro N, Akkaya K, Uluagac AS. Distributed connectivity maintenance in swarm of drones during post-disaster transportation applications. IEEE Trans Intell Transp Syst. 2021;22(9):6061–73. https://doi.org/10.1109/TITS.2021.3066843.

    Article  Google Scholar 

  84. Do-Duy T, Nguyen LD, Duong TQ, Khosravirad SR, Claussen H. Joint optimisation of real-time deployment and resource allocation for UAV-aided disaster emergency communications. IEEE J Sel Areas Commun. 2021;39(11):3411–24. https://doi.org/10.1109/JSAC.2021.3088662.

    Article  Google Scholar 

  85. Matolak DW, Sun R. Unmanned aircraft systems: air-ground channel characterization for future applications. IEEE Veh Technol Mag. 2015;10(2):79–85. https://doi.org/10.1109/MVT.2015.2411191.

    Article  Google Scholar 

  86. Li B, Fei Z, Zhang Y. UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet Things J. 2019;6(2):2241–63. https://doi.org/10.1109/JIOT.2018.2887086.

    Article  Google Scholar 

  87. Khuwaja AA, Chen Y, Zhao N, Alouini MS, Dobbins P. A survey of channel modeling for UAV communications. IEEE Commun Surv Tutor. 2018;20(4):2804–21. https://doi.org/10.1109/COMST.2018.2856587.

    Article  Google Scholar 

  88. Andersen JB, Kovacs IZ. Power distributions revisited. In: Proceedings COST273 3rd management committee meeting; 2002.

  89. Jari Salo PV, El-Sallabi HM. Statistical analysis of the multiple scattering radio channel. Comput Sci Commun Dict. 2000;54(11):1401–1401. https://doi.org/10.1007/1-4020-0613-6_15358.

    Article  MathSciNet  Google Scholar 

  90. Bithas PS, Nikolaidis V, Kanatas AG, Karagiannidis GK. UAV-to-ground communications: channel modeling and UAV selection. IEEE Trans Commun. 2020;68(8):5135–44. https://doi.org/10.1109/TCOMM.2020.2992040.

    Article  Google Scholar 

  91. Matolak DW, Fiebig UC. UAV channel models: review and future research. In: 13th European conference antennas propagation, EuCAP 2019, no. EuCAP; 2019, pp. 1–5.

  92. Cui Z, Briso-Rodriguez C, Guan K, Zhong Z, Quitin F. Multi-frequency air-to-ground channel measurements and analysis for UAV communication systems. IEEE Access. 2020;8:110565–74. https://doi.org/10.1109/ACCESS.2020.2999659.

    Article  Google Scholar 

  93. Yan C, Fu L, Zhang J, Wang J. A comprehensive survey on UAV communication channel modeling. IEEE Access. 2019;7:107769–92. https://doi.org/10.1109/ACCESS.2019.2933173.

    Article  Google Scholar 

  94. Jiang H, et al. A novel 3D UAV channel model for A2G communication environments using AoD and AoA estimation algorithms. IEEE Trans Commun. 2020;68(11):7232–46. https://doi.org/10.1109/TCOMM.2020.3011716.

    Article  Google Scholar 

  95. Wang H, Ren G, Chen J, Ding G, Yang Y. Unmanned aerial vehicle-aided communications: joint transmit power and trajectory optimization. IEEE Wirel Commun Lett. 2018;7(4):522–5. https://doi.org/10.1109/LWC.2018.2792435.

    Article  Google Scholar 

  96. Jiang F, Swindlehurst AL. Optimization of UAV heading for the ground-to-air uplink. IEEE J Sel Areas Commun. 2012;30(5):993–1005. https://doi.org/10.1109/JSAC.2012.120614.

    Article  Google Scholar 

  97. Di Franco C, Buttazzo G. Energy-aware coverage path planning of UAVs. In: Proceedings of 2015 IEEE international conference on autonomous robot systems and competitions. ICARSC 2015; 2015. pp. 111–117. https://doi.org/10.1109/ICARSC.2015.17.

  98. Fadlullah ZM, Takaishi D, Nishiyama H, Kato N, Miura R. A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks. IEEE Netw. 2016;30(1):100–5. https://doi.org/10.1109/MNET.2016.7389838.

    Article  Google Scholar 

  99. Wu Q, Zeng Y, Zhang R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans Wirel Commun. 2018;17(3):2109–21. https://doi.org/10.1109/TWC.2017.2789293.

    Article  Google Scholar 

  100. Lakew DS, Masood A, Cho S. 3D UAV placement and trajectory optimization in UAV assisted wireless networks. Int Conf Inf Netw. 2020;2020:80–2. https://doi.org/10.1109/ICOIN48656.2020.9016553.

    Article  Google Scholar 

  101. Demiane F, Sharafeddine S, Farhat O. An optimized UAV trajectory planning for localization in disaster scenarios. Comput Netw. 2020;179:107378. https://doi.org/10.1016/j.comnet.2020.107378.

    Article  Google Scholar 

  102. Lee JY, Scholtz RA. Ranging in a dense multipath environment using an UWB radio link. IEEE J Sel Areas Commun. 2002;20(9):1677–83. https://doi.org/10.1109/JSAC.2002.805060.

    Article  Google Scholar 

  103. Gezici S, et al. Localization via ultra-wideband radios: a look at positioning aspects of future sensor networks. IEEE Signal Process Mag. 2005;22(4):70–84. https://doi.org/10.1109/MSP.2005.1458289.

    Article  Google Scholar 

  104. Zhang Y, Chen Y, Liu Y. Towards unique and anchor-free localization for wireless sensor networks. Wirel Pers Commun. 2012;63(1):261–78. https://doi.org/10.1007/s11277-011-0337-0.

    Article  Google Scholar 

  105. Guo Q, Zhang Y, Lloret J, Kantarci B, Seah WKG. A localization method avoiding flip ambiguities for micro-UAVs with bounded distance measurement errors. IEEE Trans Mob Comput. 2019;18(8):1718–30. https://doi.org/10.1109/TMC.2018.2865462.

    Article  Google Scholar 

  106. Arafat MY, Moh S. Localization and clustering based on swarm intelligence in UAV networks for emergency communications. IEEE Internet Things J. 2019;6(5):8958–76. https://doi.org/10.1109/JIOT.2019.2925567.

    Article  Google Scholar 

  107. Alsamhi SH, et al. UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones. 2022;6(7):1–21. https://doi.org/10.3390/drones6070154.

    Article  Google Scholar 

  108. Donratanapat N, Samadi S, Vidal JM, SadeghiTabas S. A national scale big data analytics pipeline to assess the potential impacts of flooding on critical infrastructures and communities. Environ Model Softw. 2020;133:104828. https://doi.org/10.1016/j.envsoft.2020.104828.

    Article  Google Scholar 

  109. Vanitha S, Padma T. A survey on swarm intelligence algorithms. Int J Comput Sci Mob Comput. 2014;3(5):994–8.

    Google Scholar 

  110. Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B. Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J. 2021;8(21):16047–71. https://doi.org/10.1109/JIOT.2020.3044966.

    Article  Google Scholar 

  111. Hernandez D, Cano JC, Silla F, Calafate CT, Cecilia JM. AI-enabled autonomous drones for fast climate change crisis assessment. IEEE Internet Things J. 2022;9(10):7286–97. https://doi.org/10.1109/JIOT.2021.3098379.

    Article  Google Scholar 

  112. Sun W, Bocchini P, Davison BD. Applications of artificial intelligence for disaster management, vol. 103, no 3. Dordrecht: Springer; 2020. https://doi.org/10.1007/s11069-020-04124-3.

  113. Arinta RR, Andi EWR. Natural disaster application on big data and machine learning: a review. In: 2019 4th international conference on information technology, information systems and electrical engineering ICITISEE 2019, vol. 6; 2019, pp. 249–254. https://doi.org/10.1109/ICITISEE48480.2019.9003984.

  114. Yu M, Yang C, Li Y. Big data in natural disaster management: a review. Geoscience. 2018;8(5):165. https://doi.org/10.3390/geosciences8050165.

    Article  Google Scholar 

  115. Munawar HS, Hammad AWA, Waller ST, Thaheem MJ, Shrestha A. An integrated approach for post-disaster flood management via the use of cutting-edge technologies and UAVs: a review. Sustain. 2021;13(14):7925. https://doi.org/10.3390/su13147925.

    Article  Google Scholar 

  116. Munawar HS, Mojtahedi M, Hammad AWA, Ostwald MJ, Waller ST. An AI/ML-based strategy for disaster response and evacuation of victims in aged care facilities in the Hawkesbury–Nepean valley: a perspective. Buildings. 2022;12(1):80. https://doi.org/10.3390/buildings12010080.

    Article  Google Scholar 

  117. Linardos V, Drakaki M, Tzionas P, Karnavas YL. Machine learning in disaster management: recent developments in methods and applications. Mach Learn Knowl Extr. 2022;4(2):446–73. https://doi.org/10.3390/make4020020.

    Article  Google Scholar 

  118. Asadpour M, Egli S, Hummel KA, Giustiniano D. Routing in a fleet of micro aerial vehicles: first experimental insights. In: AIRBORNE 2014—proceedings 2014 ACM work. airborne networks commun. co-located with MobiHoc 2014; 2014, pp. 9–10. https://doi.org/10.1145/2636582.2636832.

  119. Bin Tariq MM, Ammar M, Zegura E. Message ferry route design for sparse ad hoc networks with mobile nodes. Proc Int Symp Mob Ad Hoc Netw Comput. 2006;2006:37–48. https://doi.org/10.1145/1132905.1132910.

    Article  Google Scholar 

  120. Raffelsberger C, Hellwagner H. A hybrid MANET-DTN routing scheme for emergency response scenarios. In: 2013 IEEE international conference on pervasive computing and communications workshops PerCom Work. 2013; 2013, pp. 505–510. https://doi.org/10.1109/PerComW.2013.6529549.

  121. Aung CY, Ho IWH, Chong PHJ. Store-carry-cooperative forward routing with information epidemics control for data delivery in opportunistic networks. IEEE Access. 2017;5:6608–25. https://doi.org/10.1109/ACCESS.2017.2690341.

    Article  Google Scholar 

  122. Fajardo JTB, Yasumoto K, Shibata N, Sun W, Ito M. Disaster information collection with opportunistic communication and message aggregation. J Inf Process. 2014;22(2):106–17. https://doi.org/10.2197/ipsjjip.22.106.

    Article  Google Scholar 

  123. Huda MN, Yasmeen F, Yamada S, Sonehara N. An approach for short message resilience in disaster-stricken areas. In: International conference on information network; 2012. pp. 120–125. https://doi.org/10.1109/ICOIN.2012.6164362.

  124. Yang Y, et al. Energy-efficient data routing in cooperative UAV swarms for medical assistance after a disaster. Chaos. 2019. https://doi.org/10.1063/1.5092740.

    Article  MathSciNet  Google Scholar 

  125. Harounabadi M, Puschmann A, Artemenko O, Mitschele-Thiel A. TAG: trajectory aware geographical routing in cognitive radio Ad Hoc networks with UAV nodes. In: Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 155; 2015. pp. 111–122. https://doi.org/10.1007/978-3-319-25067-0_9.

  126. Shumeye Lakew D, Sa’Ad U, Dao NN, Na W, Cho S. Routing in flying ad hoc networks: a comprehensive survey. IEEE Commun Surv Tutor. 2020;22(2):1071–120. https://doi.org/10.1109/COMST.2020.2982452.

    Article  Google Scholar 

  127. Arafat MY, Moh S. Location-aided delay tolerant routing protocol in UAV networks for post-disaster operation. IEEE Access. 2018;6:59891–906. https://doi.org/10.1109/ACCESS.2018.2875739.

    Article  Google Scholar 

  128. Fu J, Nunez A, De Schutter B. Real-time UAV routing strategy for monitoring and inspection for postdisaster restoration of distribution networks. IEEE Trans Ind Inform. 2022;18(4):2582–92. https://doi.org/10.1109/TII.2021.3098506.

    Article  Google Scholar 

  129. Faiz TI, Vogiatzis C, Noor-E-Alam M. Computational approaches for solving two-echelon vehicle and UAV routing problems for post-disaster humanitarian operations. Expert Syst Appl. 2024;237:121473. https://doi.org/10.1016/j.eswa.2023.121473.

    Article  Google Scholar 

  130. Mohammed Ahmed SB, Hussain SA, Latiff LA, Ahmad N, Sam SM. Performance evaluation of FANET routing protocols in disaster scenarios. In: Proc. 2021 IEEE Symp. Futur. Telecommun. Technol. SOFTT; 2021. pp. 46–51. https://doi.org/10.1109/SOFTT54252.2021.9673152.

  131. Yin C, **ao Z, Cao X, ** X, Yang P, Wu D. Enhanced routing protocol for fast flying UAV network. In: 2016 IEEE Int. Conf. Commun. Syst. ICCS; 2016. https://doi.org/10.1109/ICCS.2016.7833587.

  132. Arafat MY, Moh S. Routing protocols for unmanned aerial vehicle networks: a survey. IEEE Access. 2019;7:99694–720. https://doi.org/10.1109/ACCESS.2019.2930813.

    Article  Google Scholar 

  133. Khan MA, Khan IU, Safi A, Quershi IM. Dynamic routing in flying Ad-Hoc networks using topology-based routing protocols. Drones. 2018;2(3):1–15. https://doi.org/10.3390/drones2030027.

    Article  Google Scholar 

  134. Bousbaa FZ, Kerrache CA, Mahi Z, Tahari AEK, Lagraa N, Yagoubi MB. GeoUAVs: a new geocast routing protocol for fleet of UAVs. Comput Commun. 2020;149:259–69. https://doi.org/10.1016/j.comcom.2019.10.026.

    Article  Google Scholar 

  135. Gao M, Zhang B, Wang L. A dynamic priority packet scheduling scheme for post-disaster UAV-assisted Mobile Ad Hoc network. In: IEEE wirel. commun. netw. Conf. WCNC; 2021, vol. 2021. https://doi.org/10.1109/WCNC49053.2021.9417537.

  136. Mukherjee A, Fakoorian SAA, Huang J, Swindlehurst AL. Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tutor. 2014;16(3):1550–73. https://doi.org/10.1109/SURV.2014.012314.00178.

    Article  Google Scholar 

  137. Liu C, Quek TQS, Lee J. Secure UAV communication in the presence of active eavesdropper. In: 2017 9th international conference on wireless communications and signal processing WCSP 2017—Proc., vol. 2017-Janua, 2017; pp. 1–6. https://doi.org/10.1109/WCSP.2017.8171198.

  138. Altawy R, Youssef AM. Security, privacy, and safety aspects of civilian drones: a survey. ACM Trans Cyber-Phys Syst. 2017;1(2):1–25. https://doi.org/10.1145/3001836.

    Article  Google Scholar 

  139. Heron S. Advanced encryption standard (AES). Netw Secur. 2009;2009(12):8–12. https://doi.org/10.1016/S1353-4858(10)70006-4.

    Article  Google Scholar 

  140. Shafique A, Mehmood A, Elhadef M. Survey of security protocols and vulnerabilities in unmanned aerial vehicles. IEEE Access. 2021;9:46927–48. https://doi.org/10.1109/ACCESS.2021.3066778.

    Article  Google Scholar 

  141. Vegh L, Miclea L. A new approach towards increased security in cyber-physical systems. In: Int. Conf. Syst. Signals, Image Process., no. May; 2014. pp. 175–8.

  142. Naji AW, Zaidan AA, Zaidan BB, Hameed SA, Khalifa OO. Novel approach for secure cover file of hidden data in the unused area within EXE file using computation between cryptography and steganography. J Comput Sci. 2009;9(5):294–300.

    Google Scholar 

  143. Canetti R, Varia M. Decisional diffie-hellman problem. In: van Tilborg HCA, Jajodia S, editors. Encyclopedia of cryptography and security. Boston, MA, Springer; 2011. https://doi.org/10.1007/978-1-4419-5906-5_443.

    Chapter  Google Scholar 

  144. Wang Y, Su Z, Xu Q, Li R, Luan TH, Wang P. A secure and intelligent data sharing scheme for UAV-assisted disaster rescue. IEEE/ACM Trans Netw. 2023;5:1–17. https://doi.org/10.1109/TNET.2022.3226458.

    Article  Google Scholar 

  145. Wesson KD, Humphreys TE, Evans BL. Can cryptography secure next generation air traffic surveillance. IEEE Secur Priv. 2014;10(10):1–8.

    Google Scholar 

  146. Sahingoz OK. Multi-level dynamic key management for scalable wireless sensor networks with UAV. Lect. Notes Electr. Eng.; 2013. vol. 214 LNEE, pp. 11–19. https://doi.org/10.1007/978-94-007-5857-5_2.

  147. Valentin-Alexandru V, Ion B, Victor-Valeriu P. Energy efficient trust-based security mechanism for wireless sensors and unmanned aerial vehicles. In: Proc. 11th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2019; 2019. pp. 5–10. https://doi.org/10.1109/ECAI46879.2019.9041986.

  148. Yoon K, Park D, Yim Y, Kim K, Yang SK, Robinson M. Security authentication system using encrypted channel on UAV network. In: Proc.—2017 1st IEEE Int. Conf. Robot. Comput. IRC 2017; 2017. pp. 393–398. https://doi.org/10.1109/IRC.2017.56.

  149. Pandey GK, Gurjar DS, Nguyen HH, Yadav S. Security threats and mitigation techniques in UAV communications: a comprehensive survey. IEEE Access. 2022;10:112858–97. https://doi.org/10.1109/ACCESS.2022.3215975.

    Article  Google Scholar 

  150. Zhou J, Yang J, Lu L. Research on multi-UAV networks in disaster emergency communication. In: IOP Conf. Ser. Mater. Sci. Eng.; 2020. vol. 719, no. 1. https://doi.org/10.1088/1757-899X/719/1/012054.

  151. Wu AD, Johnson EN. Autonomous flight in GPS-denied environments using monocular vision and inertial sensors. AIAA Infotech Aerosp. 2010;2010:1–19. https://doi.org/10.2514/6.2010-3510.

    Article  Google Scholar 

  152. Balamurugan G, Valarmathi J, Naidu VPS. Survey on UAV navigation in GPS denied environments. In: Int. Conf. Signal Process. Commun. Power Embed. Syst. SCOPES 2016—Proc., pp. 198–204; 2017. https://doi.org/10.1109/SCOPES.2016.7955787.

  153. De Melo CFE, et al. UAVouch: a secure identity and location validation scheme for UAV-networks. IEEE Access. 2021;9:82930–46. https://doi.org/10.1109/ACCESS.2021.3087084.

    Article  Google Scholar 

  154. Choudhary G, Sharma V, You I, Yim K, Chen IR, Cho JH. Intrusion detection systems for networked unmanned aerial vehicles: a survey. In: 2018 14th Int. Wirel Commun Mob Comput Conf IWCMC. 2018;2018:560–5.https://doi.org/10.1109/IWCMC.2018.8450305.

  155. Lv Z, Qiao L, Hossain MS, Choi BJ. Analysis of using blockchain to protect the privacy of drone big data. IEEE Netw. 2021;35(1):44–9. https://doi.org/10.1109/MNET.011.2000154.

    Article  Google Scholar 

  156. Jensen IJ, Selvaraj DF, Ranganathan P. Blockchain technology for networked swarms of unmanned aerial vehicles (UAVs). In: 20th IEEE Int. Symp. A World Wireless, Mob. Multimed. Networks, WoWMoM 2019, no. C, 2019. https://doi.org/10.1109/WoWMoM.2019.8793027.

  157. Li T et al. Lightweight security authentication mechanism towards UAV networks. In: Proc.—2019 Int. Conf. Netw. Netw. Appl. NaNA 2019; 2019, pp. 379–384. https://doi.org/10.1109/NaNA.2019.00072.

  158. Li VC. Advances in ECC research. In: Am. Concr. Institute, ACI Spec. Publ., vol. SP-206; 2002. pp. 373–400. https://doi.org/10.14359/12264.

  159. Johnson D, Menezes A, Vanstone S. The elliptic curve digital signature algorithm (ECDSA). Int J Inf Secur. 2001;1(1):36–63. https://doi.org/10.1007/s102070100002.

    Article  Google Scholar 

  160. Haakegaard R, Lang J. The elliptic curve diffie-hellman (ECDH). Retrieved Febr. 10, 2020, from http//koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pdf, no. December; 2015, p. 4.

  161. Zhang S, Liu Y, Han Z, Yang Z. A lightweight authentication protocol for UAVs based on ECC scheme. Drones. 2023;7(5):315. https://doi.org/10.3390/drones7050315.

    Article  Google Scholar 

  162. Rodday NM, De Schmidt RO, Pras A. Exploring security vulnerabilities of unmanned aerial vehicles. In: Proc. NOMS 2016 - 2016 IEEE/IFIP Netw. Oper. Manag. Symp., no. Noms; 2016, pp. 993–994. https://doi.org/10.1109/NOMS.2016.7502939.

  163. He D, Chan S, Guizani M. Communication security of unmanned aerial vehicles. IEEE Wirel Commun. 2016;24(4):134–9. https://doi.org/10.1109/MWC.2016.1600073WC.

    Article  Google Scholar 

  164. Abdallah A, Ali MZ, Mišić J, Mišić VB. Efficient security scheme for disaster surveillance UAV communication networks. In: Inf. 2019; 2019, vol. 10, no. 2, p. 43. https://doi.org/10.3390/INFO10020043.

  165. Sun X, Ng DWK, Ding Z, Xu Y, Zhong Z. Physical layer security in UAV systems: challenges and opportunities. IEEE Wirel Commun. 2019;26(5):40–7. https://doi.org/10.1109/MWC.001.1900028.

    Article  Google Scholar 

  166. Wang X, Feng W, Chen Y, Ge N. UAV swarm-enabled aerial CoMP: a physical layer security perspective. IEEE Access. 2019;7:120901–16. https://doi.org/10.1109/ACCESS.2019.2936680.

    Article  Google Scholar 

  167. Ch R, Srivastava G, Reddy Gadekallu T, Maddikunta PKR, Bhattacharya S. Security and privacy of UAV data using blockchain technology. J Inf Secur Appl. 2020;55:102670. https://doi.org/10.1016/j.jisa.2020.102670.

    Article  Google Scholar 

  168. Alladi T, Bansal G, Chamola V, Guizani M. SecAuthUAV: A Novel Authentication scheme for UAV-ground station and UAV-UAV communication. IEEE Trans Veh Technol. 2020;69(12):15068–77. https://doi.org/10.1109/TVT.2020.3033060.

    Article  Google Scholar 

  169. Abro GEM, Zulkifli SABM, Masood RJ, Asirvadam VS, Laouti A. Comprehensive review of UAV detection, security, and communication advancements to prevent threats. Drones. 2022;6(10):284. https://doi.org/10.3390/drones6100284.

    Article  Google Scholar 

  170. Iqbal S. A study on UAV operating system security and future research challenges. In: 2021 IEEE 11th Annu. Comput Commun Work Conf CCWC. 2021; 2021, pp. 759–65. https://doi.org/10.1109/CCWC51732.2021.9376151.

  171. Tsao KY, Girdler T, Vassilakis VG. A survey of cyber security threats and solutions for UAV communications and flying ad-hoc networks. Ad Hoc Netw. 2022;133: 102894. https://doi.org/10.1016/J.ADHOC.2022.102894.

    Article  Google Scholar 

  172. Asghar Khan M, et al. A provable and privacy-preserving authentication scheme for UAV-enabled intelligent transportation systems. IEEE Trans Ind Inform. 2022;18(5):3416–25. https://doi.org/10.1109/TII.2021.3101651.

    Article  Google Scholar 

  173. McGrath T, Bagci IE, Wang ZM, Roedig U, Young RJ. A PUF taxonomy. Appl Phys Rev. 2019. https://doi.org/10.1063/1.5079407.

    Article  Google Scholar 

  174. Alladi T, Chamola V, Kumar N. PARTH: a two-stage lightweight mutual authentication protocol for UAV surveillance networks. Comput Commun. 2020;160:81–90. https://doi.org/10.1016/j.comcom.2020.05.025.

    Article  Google Scholar 

  175. Garcia-Bosque M, Diez-Senorans G, Sanchez-Azqueta C, Celma S. Introduction to physically unclonable fuctions: properties and applications. In: EC9 CTD 2020—24th :xIEEE Eur. Conf. Circuit Theory Des; 2020. https://doi.org/10.1109/ECCTD49232.2020.9218404

  176. Zhang Y, Mou Z, Gao F, Jiang J, Ding R, Han Z. UAV-enabled secure communications by multi-agent deep reinforcement learning. IEEE Trans Veh Technol. 2020;69(10):11599–611. https://doi.org/10.1109/TVT.2020.3014788.

    Article  Google Scholar 

  177. Bushnaq OM, Mishra D, Natalizio E, Akyildiz IF. Unmanned aerial vehicles (UAVs) for disaster management. In: Nanotechnology-based smart remote sens. Networks Disaster Prev.; 2022. pp. 159–188. https://doi.org/10.1016/B978-0-323-91166-5.00013-6.

  178. Yadav S, Trivedi MC, Singh VK, Kolhe ML. Securing AODV routing protocol against black hole attack in MANET using outlier detection scheme. In: 2017 4th IEEE Uttar Pradesh Sect. Int. Conf. Electr. Comput. Electron. UPCON 2017, vol. 2018-Janua; 2017. pp. 1–4. https://doi.org/10.1109/UPCON.2017.8251012.

  179. Patil PA, Deshpande RS, Mane PB. Trust and opportunity based routing framework in wireless sensor network using hybrid optimization algorithm. Wirel Pers Commun. 2020;115(1):415–37. https://doi.org/10.1007/S11277-020-07579-6/FIGURES/7.

    Article  Google Scholar 

Download references

Funding

No funding received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Chandran.

Ethics declarations

Conflict of interest

The authors declare no competing interests in relation to this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, I., Vipin, K. Multi-UAV Networks for Disaster Monitoring: Challenges and Opportunities from a Network Perspective. SN COMPUT. SCI. 5, 519 (2024). https://doi.org/10.1007/s42979-024-02788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02788-3

Keywords

Navigation