Log in

The Effects of Short-Term Resistance Training and Subsequent Detraining on Neuromuscular Function, Muscle Cross-Sectional Area, and Lean Mass

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

To examine and compare the effects of three days of dynamic constant external resistance (DCER) and isokinetic (ISOK) training and subsequent detraining on thigh muscle cross-sectional area (TMCSA) and thigh lean mass (TLM), ISOK peak torque (PT), DCER strength, isometric force, muscle activation, and percent voluntary activation (%VA).

Methods

Thirty-one apparently-healthy untrained men (mean ± SD age = 22.2 ± 4.2 years; body mass = 77.9 ± 12.9 kg; height = 173.9 ± 5.4 cm) were randomly assigned to a DCER training group (n = 11), ISOK training group (n = 10) or control (CONT) group (n = 10). Subjects visited the laboratory eight times. The first visit was a familiarization session, the second visit was a pre-training assessment, the subsequent three visits were for unilateral training of the quadriceps (if assigned to a training group), and the last three visits were the post-training assessments conducted at three days, one week, and two weeks after training ended.

Results

DCER strength increased from pre- to post-training assessment 1 in both limbs for the DCER group only, and remained elevated during post-training assessments 2 and 3 (P < 0.05). In addition, surface EMG for the biceps femoris was higher at post-training assessment 3 than at the pre-training assessment, and post-training assessments 1 and 2 (P < 0.05). No other training-related changes were found.

Conclusion

The primary finding of this study was that DCER strength of the trained and untrained limbs can be increased with three days of training. This has important implications for injury rehabilitation, where in the initial period post-injury strength gains on an injured limb can possibly be obtained with short-term contralateral resistance training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Software used are either widely available, or custom-written.

Abbreviations

BF%:

Body fat %

BM:

Body mass

CSA:

Muscle cross-sectional area

DCER:

Dynamic constant external resistance

DXA:

Dual-energy X-ray absorptiometry

EMG:

Electromyography

ISOK:

Isokinetic

MMG:

Mechanomyography

MVC:

Maximum voluntary contraction

PT:

Peak torque

TF%:

Thigh fat %

TLM:

Thigh lean mass

TMCSA:

Thigh muscle cross-sectional area

RPE:

Rating of perceived exertion

%VA:

Percent voluntary activation

References

  1. Akima H, Takahashi H, Kuno S Y, Masuda K, Masuda T, Shimojo H, Anno I, Itai Y, Katsuta S. Early phase adaptations of muscle use and strength to isokinetic training. Med Sci Sports Exerc. 1999;31(4):588–94. https://doi.org/10.1097/00005768-199904000-00016.

    Article  CAS  PubMed  Google Scholar 

  2. Allen GM, Gandevia SC, McKenzie DK. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve. 1995;18(6):593–600. https://doi.org/10.1002/mus.880180605.

    Article  CAS  PubMed  Google Scholar 

  3. Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, Malek MH, Mielke M. Effects of two days of isokinetic training on strength and electromyographic amplitude in the agonist and antagonist muscles. J Strength Cond Res. 2007;21(3):757–62. https://doi.org/10.1519/R-20536.1.

    Article  PubMed  Google Scholar 

  4. Brown AB, McCartney N, Sale DG. Positive adaptations to weight-lifting training in the elderly. J Appl Physiol. 1990;69(5):1725–33. https://doi.org/10.1152/jappl.1990.69.5.1725.

    Article  CAS  PubMed  Google Scholar 

  5. Brown LE, Whitehurst M. The effect of short-term isokinetic training on force and rate of velocity development. J Strength Cond Res. 2003;17(1):88–94. https://doi.org/10.1519/1533-4287(2003)017<0088:teosti>2.0.co;2.

    Article  PubMed  Google Scholar 

  6. Brown N, Bubeck D, Haeufle DFB, Weickenmeier J, Kuhl E, Alt W, Schmitt S. Weekly time course of neuro-muscular adaptation to intensive strength training. Front Physiol. 2017;8:329. https://doi.org/10.3389/fphys.2017.00329.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cannon J, Kay D, Tarpenning KM, Marino FE. Comparative effects of resistance training on peak isometric torque, muscle hypertrophy, voluntary activation and surface EMG between young and elderly women. Clin Physiol Funct Imaging. 2007;27(2):91–100. https://doi.org/10.1111/j.1475-097X.2007.00719.x.

    Article  PubMed  Google Scholar 

  8. Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol. 1992;73(3):911–7. https://doi.org/10.1152/jappl.1992.73.3.911.

    Article  CAS  PubMed  Google Scholar 

  9. Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol. 2006;101(5):1514–22. https://doi.org/10.1152/japplphysiol.00531.2006.

    Article  PubMed  Google Scholar 

  10. Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve. 2010;41(5):651–60. https://doi.org/10.1002/mus.21539.

    Article  PubMed  Google Scholar 

  11. Coburn JW, Housh TJ, Malek MH, Weir JP, Cramer JT, Beck TW, Johnson GO. Neuromuscular responses to three days of velocity-specific isokinetic training. J Strength Cond Res. 2006;20(4):892–8. https://doi.org/10.1519/R-18745.1.

    Article  PubMed  Google Scholar 

  12. Coleman AE. Effect of unilateral isometric and isotonic contractions on the strength of the contralateral limb. Res Q. 1969;40(3):490–5. https://doi.org/10.1111/j.1748-1716.1992.tb09263.x.

    Article  CAS  PubMed  Google Scholar 

  13. Colliander EB, Tesch PA. Effects of detraining following short term resistance training on eccentric and concentric muscle strength. Acta Physiol Scand. 1992;144(1):23–9. https://doi.org/10.1111/j.1748-1716.1992.tb09263.x.

    Article  CAS  PubMed  Google Scholar 

  14. Coratella G, Milanese C, Schena F. Unilateral eccentric resistance training: A direct comparison between isokinetic and dynamic constant external resistance modalities. Eur J Sport Sci. 2015;15(3):720–6. https://doi.org/10.1080/17461391.2015.1060264.

    Article  PubMed  Google Scholar 

  15. Cramer JT, Stout JR, Culbertson JY, Egan AD. Effects of creatine supplementation and three days of resistance training on muscle strength, power output, and neuromuscular function. J Strength Cond Res. 2007;21(3):668–77. https://doi.org/10.1519/R-20005.1.

    Article  PubMed  Google Scholar 

  16. Davies J, Parker DF, Rutherford OM, Jones DA. Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training. Eur J Appl Physiol Occup Physiol. 1988;57(6):667–70. https://doi.org/10.1007/BF01075986.

    Article  CAS  PubMed  Google Scholar 

  17. Day ML, McGuigan MR, Brice G, Foster C. Monitoring exercise intensity during resistance training using the session RPE scale. J Strength Cond Res. 2004;18(2):353–8. https://doi.org/10.1519/R-13113.1.

    Article  PubMed  Google Scholar 

  18. de Boer MD, Morse CI, Thom JM, de Haan A, Narici MV. Changes in antagonist muscles’ coactivation in response to strength training in older women. J Gerontol A Biol Sci Med Sci. 2007;62(9):1022–7. https://doi.org/10.1093/gerona/62.9.1022.

    Article  PubMed  Google Scholar 

  19. DeFreitas JM, Beck TW, Stock MS, Dillon MA, Sherk VD, Stout JR, Cramer JT. A comparison of techniques for estimating training-induced changes in muscle cross-sectional area. J Strength Cond Res. 2010;24(9):2383–9. https://doi.org/10.1519/JSC.0b013e3181ec86f3.

    Article  PubMed  Google Scholar 

  20. Desbrosses K, Babault N, Scaglioni G, Meyer JP, Pousson M. Neural activation after maximal isometric contractions at different muscle lengths. Med Sci Sports Exerc. 2006;38(5):937–44. https://doi.org/10.1249/01.mss.0000218136.58899.46.

    Article  PubMed  Google Scholar 

  21. Douris PC. The effect of isokinetic exercise on the relationship between blood lactate and muscle fatigue. J Orthop Sports Phys Ther. 1993;17(1):31–5. https://doi.org/10.2519/jospt.1993.17.1.31.

    Article  CAS  PubMed  Google Scholar 

  22. Egan A, Winchester J, Foster C, McGuigan M. Using session RPE to monitor different methods of resistance exercise. J Sports Sci Med. 2006;5(2):289–95.

    Google Scholar 

  23. Enoka RM. Muscle strength and its development. New perspectives. Sports Med. 1988;6(3):146–68. https://doi.org/10.2165/00007256-198806030-00003.

    Article  CAS  PubMed  Google Scholar 

  24. Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol. 2003;89(6):578–86. https://doi.org/10.1007/s00421-003-0842-2.

    Article  PubMed  Google Scholar 

  25. Farthing JP, Zehr EP, Hendy AM, Andrushko JW, Manca A, Deriu F, Loenneke J, Minetto MA, Hortobágyi T. Cross-education: Is it a viable method for rehabilitation? Braz J Mot Behav. 2020;15(1):1–4. https://doi.org/10.20338/bjmb.v15i1.215.

    Article  Google Scholar 

  26. Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, Doleshal P, Dodge C. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109–15. https://doi.org/10.1519/00124278-200102000-00019.

    Article  CAS  PubMed  Google Scholar 

  27. Garfinkel S, Cafarelli E. Relative changes in maximal force, EMG, and muscle cross-sectional area after isometric training. Med Sci Sports Exerc. 1992;24(11):1220–7. https://doi.org/10.1249/00005768-199211000-00005.

    Article  CAS  PubMed  Google Scholar 

  28. Hakkinen K, Alen M, Komi PV. Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand. 1985;125(4):573–85. https://doi.org/10.1111/j.1748-1716.1985.tb07760.x.

    Article  CAS  PubMed  Google Scholar 

  29. Hakkinen K, Komi PV, Tesch PA. Effects of combined concentric and eccentric strength training and detraining on force-time, muscle fiber and metabolic characteristics of leg extensor muscles. Scand J Med Sci Sports. 1981;3:50–8.

    Google Scholar 

  30. Harridge SD, Kryger A, Stensgaard A. Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve. 1999;22(7):831–9. https://doi.org/10.1002/(SICI)1097-4598(199907)22:7%3c831::AID-MUS4%3e3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  31. Herbert RD, Dean C, Gandevia SC. Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand. 1998;163(4):361–8. https://doi.org/10.1046/j.1365-201X.1998.t01-1-00358.x.

    Article  CAS  PubMed  Google Scholar 

  32. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G. SENIAM - European Recommendations for Surface Electromyography. In: Results of the SENIAM project. Roessingh Research and Development, Enschede, Netherlands. 1999.

  33. Holtermann A, Roeleveld K, Vereijken B, Ettema G. Changes in agonist EMG activation level during MVC cannot explain early strength improvement. Eur J Appl Physiol. 2005;94(5–6):593–601. https://doi.org/10.1007/s00421-005-1365-9.

    Article  PubMed  Google Scholar 

  34. Hortobagyi T, Houmard JA, Stevenson JR, Fraser DD, Johns RA, Israel RG. The effects of detraining on power athletes. Med Sci Sports Exerc. 1993;25(8):929–35. https://doi.org/10.1249/00005768-199308000-00008.

    Article  CAS  PubMed  Google Scholar 

  35. Houston ME, Froese EA, Valeriote SP, Green HJ, Ranney DA. Muscle performance, morphology and metabolic capacity during strength training and detraining: a one leg model. Eur J Appl Physiol Occup Physiol. 1983;51(1):25–35. https://doi.org/10.1007/BF00952534.

    Article  CAS  Google Scholar 

  36. Ikai M, Fukunaga T. A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1970;28(3):173–80. https://doi.org/10.1007/BF00696025.

    Article  CAS  PubMed  Google Scholar 

  37. Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol. 1987;391(1):1–11. https://doi.org/10.1113/jphysiol.1987.sp016721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanehisa H, Miyashita M. Specificity of velocity in strength training. Eur J Appl Physiol Occup Physiol. 1983;52(1):104–6. https://doi.org/10.1007/BF00429034.

    Article  CAS  PubMed  Google Scholar 

  39. Kidgell DJ, Frazer AK, Daly RM, Rantalainen T, Ruotsalainen I, Ahtiainen J, Avela J, Howatson G. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience. 2015;300:566–75. https://doi.org/10.1016/j.neuroscience.2015.05.057.

    Article  CAS  PubMed  Google Scholar 

  40. Knight CA, Kamen G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J Electromyogr Kinesiol. 2001;11(6):405–12. https://doi.org/10.1016/s1050-6411(01)00023-2.

    Article  CAS  PubMed  Google Scholar 

  41. Knight K, Ingersoll C, Bartholomew J. Isotonic contractions might be more effective than isokinetic contractions in develo** muscle strength. J Sport Rehabil. 2001;10(2):124–31. https://doi.org/10.1123/JSR.10.2.124.

    Article  Google Scholar 

  42. Kraemer WJ, Fleck SJ, Evans WJ. Strength and power training: physiological mechanisms of adaptation. Exerc Sport Sci Rev. 1996;24(1):363–97. https://doi.org/10.1249/00003677-199600240-00014.

    Article  CAS  PubMed  Google Scholar 

  43. Manca A, Dragone D, Dvir Z, Deriu F. Cross-education of muscular strength following unilateral resistance training: a meta-analysis. Eur J Appl Physiol. 2017;117(11):2335–54. https://doi.org/10.1007/s00421-017-3720-z.

    Article  CAS  PubMed  Google Scholar 

  44. Matuszak ME, Fry AC, Weiss LW, Ireland TR, McKnight MM. Effect of rest interval length on repeated 1 repetition maximum back squats. J Strength Cond Res. 2003;17(4):634–7. https://doi.org/10.1519/1533-4287(2003)017<0634:EORILO>2.0.CO;2.

    Article  PubMed  Google Scholar 

  45. Merton PA. Interaction between muscle fibres in a twitch. J Physiol. 1954;124(2):311–24. https://doi.org/10.1113/jphysiol.1954.sp005110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.

    CAS  PubMed  Google Scholar 

  47. Moritani T, deVries HA. Potential for gross muscle hypertrophy in older men. J Gerontol. 1980;35(5):672–82. https://doi.org/10.1093/geronj/35.5.672.

    Article  CAS  PubMed  Google Scholar 

  48. Mujika I, Padilla S. Detraining: loss of training-induced physiological and performance adaptations Part I: short term insufficient training stimulus. Sports Med. 2000;30(2):79–87. https://doi.org/10.2165/00007256-200030020-00002.

    Article  CAS  PubMed  Google Scholar 

  49. Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol. 2004;96(5):1861–6. https://doi.org/10.1152/japplphysiol.00541.2003.

    Article  CAS  PubMed  Google Scholar 

  50. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310–9. https://doi.org/10.1007/BF02388334.

    Article  CAS  PubMed  Google Scholar 

  51. Ogasawara R, Yasuda T, Sakamaki M, Ozaki H, Abe T. Effects of periodic and continued resistance training on muscle CSA and strength in previously untrained men. Clin Physiol Funct Imaging. 2011;31(5):399–404. https://doi.org/10.1111/j.1475-097X.2011.01031.x.

    Article  PubMed  Google Scholar 

  52. Parcell AC, Sawyer RD, Tricoli VA, Chinevere TD. Minimum rest period for strength recovery during a common isokinetic testing protocol. Med Sci Sports Exerc. 2002;34(6):1018–22. https://doi.org/10.1097/00005768-200206000-00018.

    Article  PubMed  Google Scholar 

  53. Pearce AJ, Hendy A, Bowen WA, Kidgell DJ. Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training. Scand J Med Sci Sports. 2013;23(6):740–8. https://doi.org/10.1111/j.1600-0838.2012.01453.x.

    Article  CAS  PubMed  Google Scholar 

  54. Pelet DCS, Orsatti FL. Effects of resistance training at different intensities of load on cross-education of muscle strength. Appl Physiol Nutr Metab. 2021;46(10):1279–89. https://doi.org/10.1139/apnm-2021-0088.

    Article  PubMed  Google Scholar 

  55. Prevost MC, Nelson AG, Maraj BKV. The effect of two days of velocity-specific isokinetic training on torque production. J Strength Cond Res. 1999;13(1):35–9. https://doi.org/10.1519/1533-4287(1999)013<0035:TEOTDO>2.0.CO;2.

    Article  Google Scholar 

  56. Rutherford OM, Jones DA. The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol. 1986;55(1):100–5. https://doi.org/10.1007/BF00422902.

    Article  CAS  PubMed  Google Scholar 

  57. Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15:95–151. https://doi.org/10.1249/00003677-198700150-00008.

    Article  CAS  PubMed  Google Scholar 

  58. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45. https://doi.org/10.1249/00005768-198810001-00009.

    Article  CAS  PubMed  Google Scholar 

  59. Sale DG, Martin JE, Moroz DE. Hypertrophy without increased isometric strength after weight training. Eur J Appl Physiol Occup Physiol. 1992;64(1):51–5. https://doi.org/10.1007/BF00376440.

    Article  CAS  PubMed  Google Scholar 

  60. Selvanayagam VS, Riek S, Carroll TJ. Early neural responses to strength training. J Appl Physiol. 2011;111(2):367–75. https://doi.org/10.1152/japplphysiol.00064.2011.

    Article  PubMed  Google Scholar 

  61. Shaver LG. Cross transfer effects of conditioning and deconditioning on muscular strength. Ergonomics. 1975;18(1):9–16. https://doi.org/10.1080/00140137508931435.

    Article  CAS  PubMed  Google Scholar 

  62. Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253–67. https://doi.org/10.2165/00007256-200434040-00005.

    Article  PubMed  Google Scholar 

  63. Simoneau E, Martin A, Porter MM, Van Hoecke J. Strength training in old age: adaptation of antagonist muscles at the ankle joint. Muscle Nerve. 2006;33(4):546–55. https://doi.org/10.1002/mus.20492.

    Article  PubMed  Google Scholar 

  64. Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, Hagerman FC, Hikida RS. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol. 1994;76(3):1247–55. https://doi.org/10.1152/jappl.1994.76.3.1247.

    Article  CAS  PubMed  Google Scholar 

  65. Sweet TW, Foster C, McGuigan MR, Brice G. Quantitation of resistance training using the session rating of perceived exertion method. J Strength Cond Res. 2004;18(4):796–802. https://doi.org/10.1519/14153.1.

    Article  PubMed  Google Scholar 

  66. Thorstensson A. Observations on strength training and detraining. Acta Physiol Scand. 1977;100(4):491–3. https://doi.org/10.1111/j.1748-1716.1977.tb05975.x.

    Article  CAS  PubMed  Google Scholar 

  67. Tillin NA, Pain MT, Folland JP. Short-term unilateral resistance training affects the agonist-antagonist but not the force-agonist activation relationship. Muscle Nerve. 2011;43(3):375–84. https://doi.org/10.1002/mus.21885.

    Article  PubMed  Google Scholar 

  68. Weir JP, Wagner LL, Housh TJ. The effect of rest interval length on repeated maximal bench presses. J Strength Cond Res. 1994;8(1):58–60. https://doi.org/10.1519/1533-4287(1994)008<0058:TEORIL>2.3.CO;2.

    Article  Google Scholar 

  69. Whaley MH, Brubaker PH, Otto RM. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  70. Young JL, Snodgrass SJ, Cleland JA, Rhon DI. Timing of physical therapy for individuals with patellofemoral pain and the influence on healthcare use, costs and recurrence rates: an observational study. BMC Health Serv Res. 2021;21(1):751. https://doi.org/10.1186/s12913-021-06768-8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was obtained for this particular investigation.

Author information

Authors and Affiliations

Authors

Contributions

PC and JC conceived and designed the research. PC and AH conducted experiments. TH wrote the analyses programs and contributed to data analyses. PC and JC analyzed and interpreted the data. PC wrote the manuscript and all authors contributed to editing and proofreading. All authors read and approved the manuscript.

Corresponding author

Correspondence to Pablo B. Costa.

Ethics declarations

Conflicts of interest

None of the authors have a conflict of interest to declare.

Ethics approval

This study was approved by the university’s Institutional Review Board for the protection of human subjects.

Informed consent

Prior to any testing, all subjects read and signed an Informed Consent form.

Consent for publication

All authors consent to the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, P.B., Herda, T.J., Herda, A.A. et al. The Effects of Short-Term Resistance Training and Subsequent Detraining on Neuromuscular Function, Muscle Cross-Sectional Area, and Lean Mass. J. of SCI. IN SPORT AND EXERCISE 4, 237–254 (2022). https://doi.org/10.1007/s42978-021-00148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-021-00148-8

Keywords

Navigation