Log in

Development of dual stress-tolerant rice variety Jyothi with Saltol and Sub1 genes through marker-assisted backcross breeding

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Abiotic stresses such as salinity, submergence, drought and extreme temperatures greatly affect rice production worldwide. Marker-assisted selection was effectively used to introgress QTLs for salinity tolerance (Saltol) and submergence tolerance (Sub1) into the background of elite rice variety Jyothi. Saltol introgressed BC1F2 lines of Jyothi with 79.3% of recipient parent genome was crossed with Sub1 introgressed BC2F2 lines of Jyothi showing 95.9% of parent genome recovery. F1 progenies were screened with Saltol and Sub1 linked foreground markers and recombinant markers. F1 heterozygous plants were selfed to produce F2 generation. F2 progenies homozygous for both the loci were selected. Phenotypic screening for salinity and submergence tolerance was performed to validate the introgressed genes. The plants able to tolerate both salinity and submergence stresses were selected for selfing to raise F3 progenies. The pyramided lines were also similar to recurrent parent in agro-morphological and grain quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adak S, Datta S, Bhattacharya S, Ghose TK, Majumder AL (2020) Diversity analysis of selected rice landraces from West Bengal and their linked molecular markers for salinity tolerance. Physiol Mol Biol Plants 24:1–14

    Google Scholar 

  • Babu NN, Krishnan SG, Vinod KK, Krishnamurthy SL, Singh VK, Singh MP, Singh R, Ellur RK, Rai V, Bollinedi H, Bhowmick PK (2017) Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa ‘Pusa basmati 1121.’ Front Plant Sci 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail AM, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138–147

    Article  Google Scholar 

  • Biswas A, Biswas A (2014) Comprehensive approaches in rehabilitating salt affected soils: a review on Indian perspective. Open Trans Geosci 1:13–24

    Article  Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RLFP and SSLP map** of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Chowdhury AD, Haritha G, Sunitha T, Krishnamurthy SL, Divya B, Padmavathi G, Ram T, Sarla N (2016) Haploty** of rice genotypes using simple sequence repeat markers associated with salt tolerance. Rice Sci 23(6):317–325

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the 21st century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Septiningsih EM, Das SR, Carandang J, Pamplona AM, Sanchez DL, Kato Y, Ye G, Reddy JN, Singh US, Iftekharuddaula KM, Venuprasad R, Vera-Cruz CN, Mackill DJ, Ismail AM (2013) Develo** new flood-tolerant varieties at the International Rice Research Institute (IRRI). SABRAO J Breed Genet 45:42–46

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Gregoria GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. https://doi.org/10.17660/ActaHortic.2005.695.25.

  • Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Ashkani S, Malek MA, Latif MA (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29(2):237–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147(3):1469–1485

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing, Oxford, pp 30–59

    Google Scholar 

  • Hsu YC, Chiu CH, Yap R, Tseng YC, Wu YP (2020) Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. Int J Mol Sci 4:1281

    Article  Google Scholar 

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    Article  CAS  PubMed  Google Scholar 

  • IRRI (1988) Standard evaluation system for rice testing programme (IRTP). Rice manual, 3rd ed. IRRI, Manila (Philippines), pp 19

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65(4):547–570

    Article  CAS  PubMed  Google Scholar 

  • Jamaloddin M, Durga Rani CV, Swathi G, Anuradha C, Vanisri S, Rajan CP, Krishnam Raju S, Bhuvaneshwari V, Jagadeeswar R, Laha GS, Prasad MS (2020) Marker assisted gene pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety “Tellahamsa.” PLoS ONE 15(6):e0234088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings PR, Coffman WR, Kauffman HE (1979) Rice improvements. international rice research institute, Los Banos, Philippines. pp 97

  • Joshi RK, Nayak S (2010) Gene pyramiding-A broad spectrum technique for develo** durable stress resistance in crops. Biotechnol Mol Biol 5(3):51–60

    CAS  Google Scholar 

  • Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int. J. Plant Genom 2012:949038

    Google Scholar 

  • Mackill DJ, Ismail AM, Singh US, Labios RV, Paris TR (2012) Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. Adv Agron 115:303–356

    Google Scholar 

  • Moldenhauer K, Nathan S (2004) 1-Rice growth and development. In: Slaton N (ed) Rice Production Handbook. University of Arkansas, Arkansas

    Google Scholar 

  • Nambiar GR, Raveendran K (2009) Exploration of untapped potentiality of coastal paddy fields of Kerala (India)—a case study. Middle East J Sci Res 4(1):44–47

    Google Scholar 

  • Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for develo** submergence- tolerant rice cultivars. Theor Appl Genet 115(6):767–776

    Article  CAS  PubMed  Google Scholar 

  • Olalekan KK, Rafii MY, Salleh AM, Mohamed MT, Ahmad K, Misran A, Abro TF, Oladosu Y, Arolu IW, Samuel C, Usman M (2019) Analysis of recurrent parent genome recovery in marker-assisted backcross breeding programme in Watermelon. Int J Sci Technol Res 8(08):945–955

    Google Scholar 

  • Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR, Pandit E, Lenka S, Anandan A (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety. Jalmagna Rice 8(1):1–4

    Google Scholar 

  • Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R (2018) Improvement of salt tolerance using wild rice genes Front. Plant Sci 8:2269

    Google Scholar 

  • Rahman H, Dakshinamurthi V, Ramasamy S, Manickam S, Kaliyaperumal AK, Raha S, Panneerselvam N, Ramanathan V, Nallathambi J, Sabariappan R, Raveendran M (2018) Introgression of submergence tolerance into CO 43, a popular rice variety of India, through marker-assisted backcross breeding. Czech J Genet Plant Breed 54(3):101–108

    Article  CAS  Google Scholar 

  • Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11:209–214

    Article  CAS  PubMed  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopala Krishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Singh UD, Mohapatra T (2013) Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR 78.’ Plant Breed 132(5):486–495

    Article  CAS  Google Scholar 

  • Singh VK, Singh BD, Kumar A, Maurya S, Krishnan SG, Vinod KK, Singh MP, Ellur RK, Bhowmick PK, Singh AK (2018) Marker-assisted introgression of Saltol QTL enhances seedling stage salt tolerance in the rice variety “Pusa Basmati 1.” Int J Genom. https://doi.org/10.1155/2018/8319879

    Article  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP map** in plant breeding: new tools for an old science. Biotechnol 7:257–264

    CAS  Google Scholar 

  • Thuy NN, Anh HH (2015) Vulnerability of rice production in Mekong River Delta under impacts from floods, salinity and climate change. Int J Adv Sci Eng Inf Technol 5(4):272–279

    Article  Google Scholar 

  • Valarmathi M, Sasikala R, Rahman H, Jagadeeshselvam N, Kambale R, Raveendran M (2019) Development of salinity tolerant version of a popular rice variety improved white ponni through marker assisted back cross breeding. Plant Physiol Rep 24:262–271

    Article  Google Scholar 

  • Vu HT, Le DD, Ismail AM, Le HH (2012) Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice ('Oryza sativa’ L.) to cope with climate change in Vietnam. Aust J Crop Sci 12:1649–1654

    Google Scholar 

  • Wassmann R, Jagadish SVK, Heuer S, Ismail A, Redona E, Serraj R, Singh RK, Howell G, Pathak H, Sumfleth K (2009) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59–122

    Article  Google Scholar 

  • Yang H, Zhang R, ** G, Feng Z, Zhou Z (2016) Assessing the genetic diversity and genealogical reconstruction of cypress (Cupressus funebris Endl.) breeding parents using SSR markers. Forests 7:160

    Article  Google Scholar 

  • Yoshida S, Forno D, Cook JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute (IRRI), Laguna, Philippines, pp 61–66

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa John.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by P. Stephen Baenziger.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, D., Rohini, P.C. & Shylaraj, K.S. Development of dual stress-tolerant rice variety Jyothi with Saltol and Sub1 genes through marker-assisted backcross breeding. CEREAL RESEARCH COMMUNICATIONS (2023). https://doi.org/10.1007/s42976-023-00432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42976-023-00432-z

Keywords

Navigation