Log in

In silico characterization of Thinopyrum elongatum-derived PsyE1 gene and validation in 7D/7E bread wheat introgression lines open avenues for carotenoid biofortification in wheat

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Current global scenario demands agricultural productivity of food grains to be kept at abreast with burgeoning population. Cereals constitute major food stuff for millennia and biofortification of new cereal varieties provides an opportunity to tackle global-scale malnutrition deficiencies without doing major shifts in the diets. Carotenoid biofortification in wheat grains has recently caught the attention of breeders owing to a myriad of health benefits offered by this micronutrient. Thinopyrum elongatum-derived PsyE1 gene encoding for Phytoene Synthase encoding Y gene, is a jackpot to enhance the carotenoid content in wheat. The present study is the first report deciphering detailed in silico characterization of Thinopyrum elongatum-derived PsyE1 gene and its protein. Promoter analysis of chloroplast localized PsyE1 gene provides clues about its possible role in stress resistance along with enhancing the carotenoid content in both durum and bread wheat. Homology, phylogeny and protein modelling studies of PsyE1 revealed its closer evolutionary relationship with barley and wheat, as well as provided a preliminary insight into catalytic and secondary structure of the protein. PCR validation of PsyE1 in 7D/7E bread wheat introgression lines further facilitated development of functional marker that could be used to track its introgression in elite bread wheat varieties. Overall, these detailed insilico insights into structure, function and validation of PsyE1 open doors for its deployment in to produce carotene biofortified hexaploid wheat through facilitating development of functional markers and MAS, as well as to elucidate its mechanism of action and regulation in response to external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Psy:

Phytoene synthase

Y gene:

Yellow pigment gene; later recognized as PsyE1 gene

PCR:

Polymerase chain reaction

GYPC:

Grain yellow pigment content

NCBI:

National center for biotechnology information

QTL:

Quantitative trait loci

Ils:

Introgression lines

CDD:

Conserved domain database

References

  • López-Emparán Ada, Daniela QM, Matías ZB, Víctor C, Federico I, Laura MF (2014) Functional analysis of the brassica napus L. phytoene synthase (PSY) gene family. PLoS One 9(12):e114878. https://doi.org/10.1371/journal.pone.0114878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adom KK, Sorrells ME, Hai LR (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51:7825–7834

    Article  CAS  PubMed  Google Scholar 

  • Alok A, Kumar J, Thakur N, Pandey A, Pandey AK, Upadhyay SK, Tiwari S (2016) Characterization and expression analysis of phytoene synthase from bread wheat (Triticum aestivum L.). PloS one 11(10):e0162443

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez D, Voß B, Maass D, Wüst F, Schaub P, Beyer P, Welsch R (2016) Carotenogenesis is regulated by 5′UTR-mediated translation of phytoene synthase splice variants. Plant Physiol 172(4):2314–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Arango J, Wust F, Beyer P, Welsch R (2010) Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta 232(5):1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Arterburn M, Kleinhofs A, Murray T, Jones S (2011) Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploidy genus Thinopyrum. Hereditas 148:8–27

    Article  PubMed  Google Scholar 

  • Atienza SG, Avila CM, Martin A (2007) The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust J Agric Res 58:767–773

    Article  CAS  Google Scholar 

  • Bariana HS, Brown GN, Bansal UK et al (2007) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Austr J Agric Res 58:576–587

    Article  Google Scholar 

  • Bast A, Vanderplas RM, Vandenberg H, Haenen G (1996) Betacarotene as antioxidant. Eur J Clin Nutr 50:54–56

    Google Scholar 

  • Baum BR, Johnson DA (2018) Lophopyrum Á Löve (1980), Thinopyrum Á Löve (1980) and Trichopyrum Á Löve (1986): one, two or three genera? a study based on the nuclear 5S DNA. Genet Resour Crop Ev 65:1–26

    Article  Google Scholar 

  • Beltran JCM, Stange C (2016) Apocarotenoids: a new carotenoid-derived pathway. Subcell Biochem 79:239–272

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1_suppl1):S31–S40. https://doi.org/10.1177/15648265110321S105

    Article  PubMed  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin a biosynthesis. Plant J 11:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Jones S (1997) Direct evidence for high level of autosyndetic pairing in hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum. Theor Appl Genet 95:568–572

    Article  Google Scholar 

  • Ceoloni C, Forte P, Ciaffi M, Nenno M, Bitti A, De Vita P, D’Egidio MG (2000) Chromosomally engineered durum wheat: the potential of alien gene introgressions affecting disease resistance and quality. In: Seminar on durum wheat improvement in the mediterranean region: new challenges, Spain, Zaragoza, 12–14

  • Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–334

    Article  CAS  PubMed  Google Scholar 

  • Ceoloni C, Kuzmanović L, Gennaro A, Forte P, Giorgi D, Rosaria Grossi M, Bitti A (2014) Genomes, chromosomes and genes of the wheatgrass genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and sustainable breeding. In: Genomics of plant genetic resources, Springer, Dordrecht, 333–358

  • Ceoloni C, Forte P, Kuzmanović L et al (2017) Cytogenetic map** of a major locus for resistance to fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theor Appl Genet 130:2005–2024. https://doi.org/10.1007/s00122-017-2939-8

    Article  CAS  PubMed  Google Scholar 

  • Cerda A, Moreno JC, Acosta D, Godoy F, Cáceres JC, Cabrera R, Stange C (2020) Functional characterisation and in silico modelling of MdPSY2 variants and MdPSY5 phytoene synthases from malus domestica. J Plant Physiol 249:153166

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Huang Z, Dai Y, Qin Y, Zhang L, Gao Y, Chen J (2013) The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS ONE 8:e65122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clydesdale FM (1993) Color as a factor in food choice. Crit Rev Food Sci Nutr 33:83–101

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49(1):557–583

    Article  CAS  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Publ Corp, NewYork, pp 209–279

    Chapter  Google Scholar 

  • Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var, durum). Hereditas 135(2–3):255–61

    CAS  PubMed  Google Scholar 

  • Flowerika Alok A, Kumar J, Thakur N, Pandey A, Pandey AK et al (2016) Characterization and expression analysis of phytoene synthase from bread wheat (Triticum aestivum L). PLoS ONE 11(10):e0162443. https://doi.org/10.1371/journal.pone.0162443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43(3):228–265

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40(4):687–698

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Gallagher CE, Matthews PD, Li FQ, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazza L et al. (2016) Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet Res Crop Evol 63(2):209–219

  • Gennaro A, Borrelli GM, D’Egidio MG, De Vita P, Ravaglia S, and Ceoloni C (2003) A chromosomally engineered durum wheat-Thinopyrum pontificum recombinant line with novel and promising attributes for varietal development. In Proceedings of the 10th International Wheat Genetics Symposium 2: 881–3

  • Gennaro A, Koebner R, Ceoloni C (2009) A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct Integr Genomics 9(3):325–334

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Yu X, Yin H, Liu G, Li A, Wang H, Kong L (2016) Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Syst Evol 302:1301–2130

    Article  Google Scholar 

  • Han Y, Zheng QS, Wei YP, Chen J, Liu R, Wan HJ (2015) In silico identification and analysis of phytoene synthase genes in plants. Genet Mol Res 14(3):9412–22. https://doi.org/10.4238/2015.August.14.5

    Article  CAS  PubMed  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, **ao YG, Ma CX, **a XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP (1990) Multidisciplinary approach to genome analysis in the diploid species, Thinopyrum bessarabicum and Th. elongatum (Lophopyrum elongatum), of the Triticeae. Theor Appl Genet 80:523–536

    Article  CAS  PubMed  Google Scholar 

  • Just BJ, Santos CA, Fonseca ME, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome map**. Theor Appl Genet 114(4):693–704

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Ko KC, Nam TS, Kim YW, Chung WI, Kim CS (2003) Expression and activity of citrus phytoene synthase and $\beta $-carotene hydroxylase in escherichia coli. J Microbiol 41(3):212–218

  • Knott DR (1968) Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol 10:695–696

    Article  Google Scholar 

  • Knott DR (1980) Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can J Genet Cytol 22:651–654

    Article  CAS  Google Scholar 

  • Knott DR (1989) The effect of transfers of alien genes for leaf rust resistance on the agronomic and quality characteristics of wheat. Euphytica 44:65–72

    Article  Google Scholar 

  • Kromdijk J, Glowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314):857–861

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmanović L, Ruggeri R, Able JA, Bassi FM, Maccaferri M, Tuberosa R, Ceoloni C (2018) Yield of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines in a range of contrasting rain-fed environments. Field Crop Res 228:147–157

    Article  Google Scholar 

  • Lao YM, **ao L, Ye ZW, Jiang JG, Zhou SS (2011) In silico analysis of phytoene synthase and its promoter reveals hints for regulation mechanisms of carotenogenesis in Duanliella bardawil. Bioinformatics 27(16):2201–2208. https://doi.org/10.1093/bioinformatics/btr371

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang X (2009) Thinopyrum ponticum and Thinopyrum intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 36:557–565

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yuan H, Zeng Y, Xu Q (2016) Plastids and carotenoid accumulation. Subcell Biochem 79:273–293

    Article  CAS  PubMed  Google Scholar 

  • Li X, Jiang X, Chen X, Song J, Ren C, **ao Y, Gao X, Ru Z (2017) Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosomes translocation line with powdery mildew resistance. PLoS ONE 12(9):e0184462

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu M, Hambleton S (2010) Taxonomic study of stripe rust, Puccinia Striiformis sensu lato, based on molecular and morphological evidence. Fungal Biol 114:881–899

    Article  CAS  PubMed  Google Scholar 

  • Löve A (1982) Generic evolution of the wheatgrasses. Biol Zentralbl 101:199–212

    Google Scholar 

  • Maass D, Arango J, Wüst F, Beyer P, Welsch R (2009) Carotenoid crystal formation in arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS ONE 4(7):e6373. https://doi.org/10.1371/journal.pone.0006373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao P, Huang Y, Wang X, Meng L, Mao P, Zhang G (2010) Cytological evaluation and karyotype analysis in plant germplasms of Elytrigia Desv. Agr Sci China 9:553–1560

    Article  Google Scholar 

  • Mezzomo N and Ferreira Sandra RS (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    Article  CAS  PubMed  Google Scholar 

  • Nishino H, Murakoshi M, Li T, Takemura M, Kuchide M, Kanazawa M, Yang Mou X, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, **no K (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21(3):257–264

    Article  CAS  PubMed  Google Scholar 

  • Padhy AK (2019) Marker assisted selection in wheat for high carotenoid and protein content in grains (M.Sc. thesis, Punjab Agricultural University, Ludhiana). http://krishikosh.egranth.ac.in/handle/1/5810127613

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee S, Woo WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135(4):2150–2161. https://doi.org/10.1104/pp.104.041442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114(3):525–37

    Article  CAS  PubMed  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007a) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114(3):525–537

    Article  CAS  PubMed  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007b) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Coku A, Inoue K, Tian L (2011) Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.). Planta 234(4):737–748

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Villalon A, Gas E, Rodriguez-Concepcion M (2009) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown arabidopsis seedlings. Plant J 60(3):424–435

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Saavedra C, Stange C (2016) Biosynthesis of carotenoids in plants: enzymes and color. Subcell Biochem 79:35–69

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sola MA, Rodriguez-Concepcion M (2012) Carotenoid biosynthesis in arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed  PubMed Central  Google Scholar 

  • Sears ER (1972a) Agropyron-wheat transfers through induced by homoeologous pairing. Can J Genet Cytol 14:736

    Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat, vol 4. Stadler Symposia, Columbia, pp 23–38

    Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proceeding of the 4th International Wheat Genetics Symposium. Univ. of Missouri, Columbia, MO, USA, pp 191–199

    Google Scholar 

  • Sestili F, Garcia-Molina MD, Gambacorta G, Beleggia R, Botticella E, De Vita P et al (2019) Provitamin a biofortification of durum wheat through a tilling approach. Int J Mol Sci 20(22):5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Article  Google Scholar 

  • Sharma A, Punetha A, Grover A, Sundar D (2010) Insights into the key enzymes of secondary metabolites biosynthesis in camellia sinensis. J Bioinform Seq Anal 2(5):53–68

    CAS  Google Scholar 

  • Shepherd KW, Islam AKMR (1988) Fourth compendium of wheat alien chromosome lines. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international genetic symposium. Bath Press, Bath, pp 1373–1398

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  CAS  PubMed  Google Scholar 

  • Shumskaya M, Bradbury LM, Monaco RR, Wurtzel ET (2012) Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell 24(9):3725–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Saini JS, Bains NS, Singh RP (2014) Positive influence of Lophopyrum ponticum derived Y gene on yellow pigment content- a major durum wheat quality trait, India. Indian J Genet Plant Breed 74:651–655. https://doi.org/10.5958/0975-6906.2014.00905.5

    Article  Google Scholar 

  • Sun Z, Gantt E, Cunningham FX (1996) Cloning and functional analysis of the β-carotene hydroxylase of arabidopsis thaliana. J Biol Chem 271(40):24349–24352

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Haven J, Qiu WG, Polle JE (2009) An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229(3):723–729

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, **ang J, Gao A et al (2010) Analysis of chromosomal structural polymorphisms in the St, P, andY genomes of Triticeae (Poaceae). Genome 53:241–249

    Article  CAS  PubMed  Google Scholar 

  • Wang RR-C (1992) Genome relationships in the perennial Triticeae based on diploid hybrids and beyond. Hereditas 116:133–136

    Article  Google Scholar 

  • Wang RR-C (2011) Agropyron and Psathyrostachys. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 77–108

    Chapter  Google Scholar 

  • Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M (2020) Horizontal gene transfer of Fhb7 from fungus underlies fusarium head blight resistance in wheat. Science. https://doi.org/10.1126/science.aba5435

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsch R, Wust F, Bar C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147(1):367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakynthinos G, Varzakas T (2016) Carotenoids from plants to food industry. Curr Res Nutr Food Sci 4(Special Issue):38

    Article  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Lukaszewski A, Kolmer J, Soria M, Goyal S, Dubcovsky J (2005) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet 111:573–582

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Koul A, Petroski R et al (1996) Molecular verification and characterization of BYDV resistant germ plasms derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theor Appl Genet 93:1033–1039

    Article  CAS  PubMed  Google Scholar 

Online references

Download references

Acknowledgements

The authors are thankful for financial assistance received under the ad hoc project, “Addressing food security through nutritionally enriched improved cultivars and technologies for swasth bharat under PURSE program” funded by Department of Science & Technology, Govt. of India, grant number: SR/PURSE Phase 2/25(G), 28.09.2017.

Funding

Funding Agency: Department of Science & Technology, Govt. of India (partial funding) Award Number: DST file number SR/PURSE Phase 2/25(G), 28.09.2017. Recipient: Dr Achla Sharma.

Author information

Authors and Affiliations

Authors

Contributions

AKP, AS and PK conceived the theme of study. AKP, AS and RK did the wet lab marker analysis. AKP, BS, PK, SK and MS did the bioinformatics part of the study. AKP, PK, PS, HS, SK and AS drafted the manuscript. AS and SB provided overall guidance and edited the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Achla Sharma.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical Approval

Authors worked in compliance with research ethics.

Additional information

Communicated by Molnár-Láng.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 651 kb)

Supplementary file2 (PDF 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhy, A.K., Kaur, P., Singh, B. et al. In silico characterization of Thinopyrum elongatum-derived PsyE1 gene and validation in 7D/7E bread wheat introgression lines open avenues for carotenoid biofortification in wheat. CEREAL RESEARCH COMMUNICATIONS 51, 75–85 (2023). https://doi.org/10.1007/s42976-022-00279-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00279-w

Keywords

Navigation