Log in

Role of hydrogen in stability and mobility of vacancy clusters in tungsten

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

We investigated the influence of hydrogen (H) on the stability and mobility of small vacancy clusters in tungsten (W) using the first-principles calculations. It is found that the presence of H not only increases the binding energy of small vacancy clusters but also changes their most favorable configurations, owing to the strong attractive interaction between H and vacancies in W. Specifically, the binding energy of di-vacancy changes from negative to positive when the H atoms are introduced. These results suggest that the H addition can significantly promote the stability of small vacancy clusters in W. More importantly, although the migration energy barriers of H-vacancy (H-V) complexes are slightly higher than that of pure vacancy clusters, the activation energy required for complexes migration is always lower than that for dissociation. Therefore, contrary to the conventional view, the collaborative motion of H and small vacancy clusters is possible, because of the low migration energy barriers. Based on the energetic results obtained by first-principles calculations, the mean lifetime and mean diffusion distance of small H–V complexes at different temperatures are examined by the object kinetic Monte Carlo simulations. The small H–V complexes are found to be stable and mobile at moderate temperature, and thus may affect the co-evolution of H and vacancies. These results shed light on the important role of H on the vacancy behaviors and provide a good reference for understanding the defects evolution in W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pitts RA, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin AS, Loarte A, Merola M, Sashala Naik A, Mitteau R, Sugihara M, Bazylev B, Stangeby PC. A full tungsten divertor for ITER: physics issues and design status. J Nucl Mater. 2013;438:S48.

    Article  CAS  Google Scholar 

  2. Hirai T, Escourbiac F, Carpentier-Chouchana S, Fedosov A, Ferrand L, Jokinen T, Komarov V, Kukushkin A, Merola M, Mitteau R, Pitts RA, Shu W, Sugihara M, Riccardi B, Suzuki S, Villari R. ITER tungsten divertor design development and qualification program. Fusion Eng Des. 2013;88(9–10):1798.

    Article  CAS  Google Scholar 

  3. Fang X, Kreter A, Rasinski M, Kirchlechner C, Brinckmann S, Linsmeier C, Dehm G. Hydrogen embrittlement of tungsten induced by deuterium plasma: insights from nanoindentation tests. J Mater Res. 2018;33(20):3530.

    Article  CAS  Google Scholar 

  4. Ye MY, Kanehara H, Fukuta S, Ohno N, Takamura S. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I. J Nucl Mater. 2003;313:72.

    Article  Google Scholar 

  5. Shu WM, Wakai E, Yamanishi T. Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma. Nucl Fusion. 2007;47(3):201.

    Article  CAS  Google Scholar 

  6. Roth J, Tsitrone E, Loarte A, Loarer T, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia C, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A. Recent analysis of key plasma wall interactions issues for ITER. J Nucl Mater. 2009;390–391:1.

    Article  CAS  Google Scholar 

  7. Tokunaga K, Baldwin MJ, Doerner RP, Noda N, Kubota Y, Yoshida N, Sogabe T, Kato T, Schedler B. Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma. J Nucl Mater. 2005;337–339:887.

    Article  CAS  Google Scholar 

  8. Oya Y, Li X, Sato M, Yuyama K, Zhang L, Kondo S, Hinoki T, Hatano Y, Watanabe H, Yoshida N, Chikada T. Thermal desorption behavior of deuterium for 6 MeV Fe ion irradiated W with various damage concentrations. J Nucl Mater. 2015;461:336.

    Article  CAS  Google Scholar 

  9. Sand AE, Dudarev SL, Nordlund K. High-energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws. Europhys Lett. 2013;103(4):46003.

    Article  CAS  Google Scholar 

  10. Mansur LK. Void swelling in metals alloys under irradiation: an assessment of the theory. Nucl Technol. 2017;40(1):5.

    Article  Google Scholar 

  11. Ackland G. Controlling radiation damage. Mater Sci. 2010;327(5973):1587.

    CAS  Google Scholar 

  12. Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead LL, Wirth BD. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation. J Nucl Mater. 2016;470:278.

    Article  CAS  Google Scholar 

  13. Hu X, Koyanagi T, Fukuda M, Kumar NAPK, Snead LL, Wirth BD, Katoh Y. Irradiation hardening of pure tungsten exposed to neutron irradiation. J Nucl Mater. 2016;480:235.

    Article  CAS  Google Scholar 

  14. Li YG, Zheng QR, Wei LM, Zhang CG, Zeng Z. A review of surface damage/microstructures and their effects on hydrogen/helium retention in tungsten. Tungsten. 2020;2(1):34.

    Article  Google Scholar 

  15. Liu LX, Li XC, Chen YC, Hu WY, Luo GN, Gao F, Deng HQ. Evaluation of tungsten interatomic potentials for radiation damage simulations. Tungsten. 2020;2(1):3.

    Article  Google Scholar 

  16. Li ZZ, Li YH, Terentyev D, Castin N, Bakaev A, Bonny G, Yang Z, Liang L, Zhou HB, Gao F, Lu GH. Investigating the formation mechanism of void lattice in tungsten under neutron irradiation: from collision cascades to ordered nanovoids. Acta Mater. 2021;219: 117239.

    Article  CAS  Google Scholar 

  17. Causey RA, Venhaus TJ. The use of tungsten in fusion reactors: a review of the hydrogen retention and migration properties. Phys Scr. 2001;T94(1):9.

    Article  CAS  Google Scholar 

  18. Hodille EA, Markelj S, Schwarz-Selinger T, Založnik A, Pečovnik M, Kelemen M, Grisolia C. Stabilization of defects by the presence of hydrogen in tungsten: simultaneous W-ion damaging and D-atom exposure. Nucl Fusion. 2019;59(1): 016011.

    Article  CAS  Google Scholar 

  19. Pečovnik M, Markelj S, Kelemen M, Schwarz-Selinger T. Effect of D on the evolution of radiation damage in W during high temperature annealing. Nucl Fusion. 2020;60(10): 106028.

    Article  CAS  Google Scholar 

  20. Pečovnik M, Hodille EA, Schwarz-Selinger T, Grisolia C, Markelj S. New rate equation model to describe the stabilization of displacement damage by hydrogen atoms during ion irradiation in tungsten. Nucl Fusion. 2020;60(3): 036024.

    Article  CAS  Google Scholar 

  21. Markelj S, Schwarz-Selinger T, Pečovnik M, Založnik A, Kelemen M, Čadež I, Bauer J, Pelicon P, Chromiński W, Ciupinski L. Displacement damage stabilization by hydrogen presence under simultaneous W ion damage and D ion exposure. Nucl Fusion. 2019;59(8): 086050.

    Article  CAS  Google Scholar 

  22. Li YH, Zhou HB, Gao F, Lu G, Lu GH, Liu F. Hydrogen induced dislocation core reconstruction in bcc tungsten. Acta Mater. 2022;226: 117622.

    Article  CAS  Google Scholar 

  23. Heinola K, Djurabekova F, Ahlgren T. On the stability and mobility of di-vacancies in tungsten. Nucl Fusion. 2018;58(2): 026004.

    Article  CAS  Google Scholar 

  24. Becquart CS, Domain C. Ab initio calculations about intrinsic point defects and He in W. Nucl Instrum Methods Phys Res Sect B. 2007;255(1):23.

    Article  CAS  Google Scholar 

  25. Muzyk M, Nguyen-Manh D, Kurzydłowski KJ, Baluc NL, Dudarev SL. Phase stability, point defects, and elastic properties of W–V and W–Ta alloys. Phys Rev B. 2011;84(10): 104115.

    Article  CAS  Google Scholar 

  26. Nguyen-Manh D, Horsfield AP, Dudarev SL. Self-interstitial atom defects in bcc transition metals: group-specific trends. Phys Rev B. 2006;73(2): 020101.

    Article  CAS  Google Scholar 

  27. Kato D, Iwakiri H, Morishita K. Formation of vacancy clusters in tungsten crystals under hydrogen-rich condition. J Nucl Mater. 2011;417(1–3):1115.

    Article  CAS  Google Scholar 

  28. Li ZZ, Li YH, Ren QY, Ma FF, Yue FY, Zhou HB, Lu GH. Strain dependence of energetics and kinetics of vacancy in tungsten. Materials. 2020;13(15):3375.

    Article  CAS  Google Scholar 

  29. Huang GY, Juslin N, Wirth BD. First-principles study of vacancy, interstitial, noble gas atom interstitial and vacancy clusters in bcc-W. Comput Mater Sci. 2016;123:121.

    Article  CAS  Google Scholar 

  30. Becquart CS, Domain C, Sarkar U, DeBacker A, Hou M. Microstructural evolution of irradiated tungsten: ab initio parameterisation of an OKMC model. J Nucl Mater. 2010;403(1–3):75.

    Article  CAS  Google Scholar 

  31. Mason DR, Nguyen-Manh D, Becquart CS. An empirical potential for simulating vacancy clusters in tungsten. J Phys Condens Matter. 2017;29(50): 505501.

    Article  CAS  Google Scholar 

  32. Kong XS, Wang S, Wu X, You YW, Liu CS, Fang QF, Chen JL, Luo GN. First-principles calculations of hydrogen solution and diffusion in tungsten: temperature and defect-trap** effects. Acta Mater. 2015;84:426.

    Article  CAS  Google Scholar 

  33. Liu YL, Zhang Y, Zhou HB, Lu GH, Liu F, Luo GN. Vacancy trap** mechanism for hydrogen bubble formation in metal. Phys Rev B. 2009;79(17): 172103.

    Article  CAS  Google Scholar 

  34. Ohsawa K, Eguchi K, Watanabe H, Yamaguchi M, Yagi M. Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals. Phys Rev B. 2012;85(9): 094102.

    Article  CAS  Google Scholar 

  35. Middleburgh SC, Voskoboinikov RE, Guenette MC, Riley DP. Hydrogen induced vacancy formation in tungsten. J Nucl Mater. 2014;448(1–3):270.

    Article  CAS  Google Scholar 

  36. Heinola K, Ahlgren T, Nordlund K, Keinonen J. Hydrogen interaction with point defects in tungsten. Phys Rev B. 2010;82(9): 094102.

    Article  CAS  Google Scholar 

  37. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter. 1993;47(1):558.

    Article  CAS  Google Scholar 

  38. Furthmuller GKJ. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.

    Article  Google Scholar 

  39. Blochl PE. Projector augmented-wave method. Phys Rev B Condens Matter. 1994;50(24):17953.

    Article  CAS  Google Scholar 

  40. John PP, Kieron B, Matthias E. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  Google Scholar 

  41. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188.

    Article  Google Scholar 

  42. Gregory M, Hannes J, Gregory KS. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci. 1995;324:305.

    Article  Google Scholar 

  43. Domain C, Becquart CS, Malerba L. Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater. 2004;335(1):121.

    Article  CAS  Google Scholar 

  44. Martin-Bragado I, Borges R, Balbuena JP, Jaraiz M. Kinetic Monte Carlo simulation for semiconductor processing: a review. Prog Mater Sci. 2018;92:1.

    Article  CAS  Google Scholar 

  45. Martin-Bragado I, Rivera A, Valles G, Gomez-Selles JL, Caturla MJ. MMonCa: an object kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput Phys Commun. 2013;184(12):2703.

    Article  CAS  Google Scholar 

  46. You YW, Li D, Kong XS, Wu X, Liu CS, Fang QF, Pan BC, Chen JL, Luo GN. Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment. Nucl Fusion. 2014;54(10): 103007.

    Article  CAS  Google Scholar 

  47. Samolyuk GD, Osetsky YN, Stoller RE. Properties of vacancy complexes with hydrogen and helium atoms in tungsten from first principles. Fusion Sci Technol. 2016;71(1):52.

    Article  Google Scholar 

  48. Hou J, Kong XS, Wu X, Song J, Liu CS. Predictive model of hydrogen trap** and bubbling in nanovoids in bcc metals. Nat Mater. 2019;18(8):833.

    Article  CAS  Google Scholar 

  49. Heinola K, Djurabekova F, Ahlgren T. On the stability and mobility of di-vacancies in tungsten. Nucl Fusion. 2018;58(2):026004.

    Article  CAS  Google Scholar 

  50. Ren QY, Li YH, Zhou HB, Li ZZ, Cheng L, Lu GH. Characterization of the energetics and configurations of hydrogen in vacancy clusters in tungsten. Nucl Fusion. 2019;59(10): 106032.

    Article  CAS  Google Scholar 

  51. Hayward E, Fu CC. Interplay between hydrogen and vacancies inα-Fe. Phys Rev B. 2013;87(17): 174103.

    Article  CAS  Google Scholar 

  52. Boda A, Sk MA, Shenoy KT, Mohan S. Diffusion, permeation and solubility of hydrogen, deuterium and tritium in crystalline tungsten: first principles DFT simulations. Int J Hydrogen Energy. 2020;45(53):29095.

    Article  CAS  Google Scholar 

  53. Heinola K, Ahlgren T. Diffusion of hydrogen in bcc tungsten studied with first principle calculations. J Appl Phys. 2010;107(11): 113531.

    Article  CAS  Google Scholar 

  54. Mundy JN, Ockers ST, Smedskjaer LC. Vacancy migration enthalpy in tungsten at high temperatures. Philos Mag A. 1987;56(6):851.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China with Grant Nos. 11905135 and 12075022, the Major Program of National Natural Science Foundation of China with Grant No. 12192281, and the National MCF Energy R&D Program with Grant No. 2018YFE0308103.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hao Li or Hong-Bo Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HX., Li, YH., Li, ZZ. et al. Role of hydrogen in stability and mobility of vacancy clusters in tungsten. Tungsten 4, 219–230 (2022). https://doi.org/10.1007/s42864-022-00151-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00151-8

Keywords

Navigation