Log in

Insight into hexanuclear peroxotantalum complexes: synthesis, characterization, and efficient catalyst for amidation reaction

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Polyoxometalates (POMs), large oxoanions of the group 5 and 6 elements, attract attention due to their use as oxidation-stable catalysts and ligands. Different from the well-known V, Mo, and W POMs, the group V POMs of Ta assemble and are stable only in highly alkaline solution rather than acidic solution. In this paper, we successfully synthesized and structurally characterized two unprecedented peroxotantalum-containing clusters, KNa2[HSe2(TaO2)6(OH)4(H2O)2O13]·15H2O (1) and Cs2K1.5Na1.5[Se4(TaO2)6 (OH)3O18]·17H2O (2), which comprises a 6-peroxo-6-tantalum core stabilized by two and four selenite centers, respectively. The simple, one-pot synthesis of 1 and 2 involving addition of sodium selenite into the acidified hexatantalate aqueous solution in the presence of hydrogen peroxide could represent a general procedure for incorporating heteroatoms into peroxo-polyoxotantalate species, thus opening new possibilities for this emergent branch of polyoxotantalate chemistry. Moreover, the catalytic properties of these two compounds were investigated using succinic anhydride and phenylamine as the model substrate, and compound 2 presents excellent catalytic activity in the amidation reactions of anhydrides and amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pope MT, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl. 1991;30(1):34.

    Article  Google Scholar 

  2. Long DL, Tsunashima R, Cronin L. Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed. 2010;49(10):1736.

    Article  CAS  Google Scholar 

  3. Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem Soc Rev. 2014;43(13):4615.

    Article  CAS  Google Scholar 

  4. Wu Y, Li X, Qi Y, Yu H, ** L, Zheng S. {Nb288O768(OH)48(CO3)12}: A macromolecular polyoxometalate with close to 300 niobium atoms. Angew Chem Int Ed. 2018;57(28):8572.

    Article  CAS  Google Scholar 

  5. Zhang M, Li H, Zhang J, Lv H, Yang GY. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin J Catal. 2021;42(6):855.

    Article  Google Scholar 

  6. Yang G, Liu Y, Lin X, Ming B, Li K, Hu C. Self-assembly of a new 3d platelike ternary-oxo-cluster: an efficient catalyst for the synthesis of pyrazoles. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.05.008.

    Article  Google Scholar 

  7. Luo J, Ye S, Li T, Sarnello E, Li H, Liu T. Distinctive trend of metal binding affinity via hydration shell breakage in nanoconfined cavity. J Phys Chem C. 2019;123(23):14825.

    Article  CAS  Google Scholar 

  8. Zhang J, Huang Y, Li G, Wei Y. Recent advances in alkoxylation chemistry of polyoxometalates: from synthetic strategies structural overviews to functional applications. Coord Chem Rev. 2019;378:395.

    Article  CAS  Google Scholar 

  9. Luo J, Chen K, Yin P, Li T, Wan G, Zhang J, Ye S, Bi X, Pang Y, Wei Y, Liu T. Effect of cation–π interaction on macroionic self-assembly. Angew Chem. 2018;130(15):4131.

    Article  Google Scholar 

  10. Han XB, Li YG, Zhang ZM, Tan HQ, Lu Y, Wang EB. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J Am Chem Soc. 2015;137(16):5486.

    Article  CAS  Google Scholar 

  11. Dong J, Hu J, Chi Y, Lin Z, Zou B, Yang S, Hill CL, Hu C. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew Chem Int Ed. 2017;56(16):4473.

    Article  CAS  Google Scholar 

  12. Dong Y, Han Q, Hu Q, Xu C, Dong C, Peng Y, Ding Y, Lan Y. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Appl Cata B. 2021;293:120214.

    Article  CAS  Google Scholar 

  13. Matsumoto M, Ozawa Y, Yagasaki A. Long hydrogen-bonded rod of molecular oxide: a hexatantalate tetramer. Inorg Chem. 2012;51(11):5991.

    Article  CAS  Google Scholar 

  14. Zhang D, Li H, Li C, Wang Z, Li T, Li N, Cheng M, Wang J, Niu J, Liu T. A large molecular cluster with high proton release capacity. Chem Commun. 2020;56(84):12849.

    Article  CAS  Google Scholar 

  15. Zhao M, Zhu XY, Li YZ, Chang JN, Li MX, Ma LH, Guo XY. A Lindqvist-type [W6O19]2- organic–inorganic compound: synthesis, characterization, antibacterial activity and preliminary studies on the mechanism of action. Tungsten. 2021. https://doi.org/10.1007/s42864-021-00073-x.

    Article  Google Scholar 

  16. Guo GL, Xu YQ, Chen BK, Lin ZG, Hu CW. Two novel polyoxotantalates formed by lindqvist-type hexatantalate and copper-amine complexes. Inorg Chem Commun. 2011;14(9):1448.

    Article  CAS  Google Scholar 

  17. Ma Y, Sun J, Li C, Li N, Ma P, Zhang D, Wang G, Niu J. Assembly of two hybrid organic-inorganic hexatantalate. Inorg Chem Commun. 2019;101:6.

    Article  CAS  Google Scholar 

  18. Matsumoto M, Ozawa Y, Yagasaki A, Zhe Y. Decatantalate—the last member of the group 5 decametalate family. Inorg Chem. 2013;52(14):7825.

    Article  CAS  Google Scholar 

  19. Besserguenev AV, Dickman MH, Pope MT. Robust alkali-stable triscarbonyl metal derivatives of hexametalate anions [M6O19{M’(CO)3}n](8-n)− (M = Nb/Ta; M’ = Mn/Re; n = 1,2). Inorg Chem. 2001;40(11):2582.

    Article  CAS  Google Scholar 

  20. Abramov PA, Sokolov MN, Floquet S, Haouas M, Taulelle F, Cadot E, Peresypkina EV, Virovets AV, Vicent C, Kompankov NB, Zhdanov AA, Shuvaeva OV, Fedin VP. Coordination-induced condensation of [Ta6O19]8–: synthesis and structure of [{(C6H6)Ru}2Ta6O19]4– and [{(C6H6)RuTa6O18}2(μ-O)]10−. Inorg Chem. 2014;53(24):12791.

    Article  CAS  Google Scholar 

  21. Abramov PA, Sokolov MN, Virovets AV, Floquet S, Haouas M, Taulelle F, Cadot E, Vicent C, Fedin VP. Grafting {Cp*Rh}2+ on the surface of Nb and Ta Lindqvist-type POM. Dalton Trans. 2015;44(5):2234.

    Article  CAS  Google Scholar 

  22. Abramov PA, Vicent C, Kompankov NB, Gushchin AL, Sokolov MN. Coordination of {C5Me5Ir}2+ to [M6O19]8– (M = Nb/Ta)-analogies and differences between Rh and Ir, Nb and Ta. Eur J Inorg Chem. 2016;2016(1):154.

    Article  CAS  Google Scholar 

  23. Liang Z, Zhao S, Ma P, Zhang C, Sun J, Song T, Niu J, Wang J. A novel tetrameric polyoxotantalate aggregate: Co8Ta24 featuring a high-nuclearity Co8 cluster. Inorg Chem. 2018;57(20):12471.

    Article  CAS  Google Scholar 

  24. Son J, Casey WH. Titanium-substituted polyoxotantalate clusters exhibiting wide pH stabilities: [Ti2Ta8O28]8− and [Ti12Ta6O44]10−. Chem Eur J. 2016;22(40):14155.

    Article  CAS  Google Scholar 

  25. Li S, Liu S, Liu S, Liu Y, Tang Q, Shi Z, Ouyang S, Ye J. Ta12}/{Ta16 cluster-containing polytantalotungstates with remarkable photocatalytic H2 evolution activity. J Am Chem Soc. 2012;134(48):19716.

    Article  CAS  Google Scholar 

  26. Zhang TZ, Yao S, Zhang ZM, Lu Y, Li YG, Wang EB. Grafting transition metal-organic fragments onto W/Ta mixed-addendum nanoclusters for broad-spectrum-driven photocatalysis. ChemPlusChem. 2014;79(8):1153.

    Article  CAS  Google Scholar 

  27. Huang P, Qin C, Zhou Y, Hong YM, Wang XL, Su ZM. Self-assembly and photocatalytic H2 evolution activity of two unprecedented polytantalotungstates based on the largest Ta18 and Ta18Yb2 clusters. Chem Commun. 2016;52(95):13787.

    Article  CAS  Google Scholar 

  28. Huang P, Wu HY, Huang M, Du M, Qin C, Wang XL, Su ZM. A novel Ta/W mixed-addendum polyoxometalate with photocatalytic properties. Dalton Trans. 2017;46(31):10177.

    Article  CAS  Google Scholar 

  29. Huang P, Wang XJ, Qi JJ, Wang XL, Huang M, Wu HY, Qin C, Su ZM. Self-assembly and photocatalytic H2 evolution activity of two nanoscale polytantalotungstates based on unprecedented Cr3Ta6 and Cr4Ta12 clusters. J Mater Chem A. 2017;5(44):22970.

    Article  CAS  Google Scholar 

  30. Peng Q, Li S, Wang R, Liu S, **e L, Zhai J, Zhang J, Zhao Q, Chen X. Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials. Dalton Trans. 2017;46(13):4157.

    Article  CAS  Google Scholar 

  31. Fullmer LB, Malmberg CE, Fast DB, Wills LA, Cheong PHY, Dolgos MR, Nyman M. Aqueous tantalum polyoxometalate reactivity with peroxide. Dalton Trans. 2017;46(26):8486.

    Article  CAS  Google Scholar 

  32. Mizuno N, Yamaguchi K, Kamata K. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord Chem Rev. 2005;249(17–18):1944.

    Article  CAS  Google Scholar 

  33. Zhang D, Liang Z, Liu S, Li L, Ma P, Zhao S, Wang H, Wang J, Niu J. Discovery of heteropolytantalate: synthesis and structure of two 6-peroxotantalo-4-phosphate clusters. Inorg Chem. 2017;56(10):5537.

    Article  CAS  Google Scholar 

  34. Wang H, Sun J, Ma Y, Li C, Li N, Ma P, Zhang D, Wang G, Wang J, Niu J. Discovery of the selenotantalate building block and its lanthanide derivatives: design synthesis and RhB decolorization properties. Dalton Trans. 2020;49(13):4078.

    Article  CAS  Google Scholar 

  35. Liang Z, Wu H, Singh V, Qiao Y, Li M, Ma P, Niu J, Wang J. Assembly of lanthanide-containing polyoxotantalate clusters with efficient photoluminescence properties. Inorg Chem. 2019;58(19):13030.

    Article  CAS  Google Scholar 

  36. Nelson WH, Tobias RS. Structure of the polyanions of the transition metals in aqueous solution: the hexatantalate. Inorg Chem. 1963;2(5):985.

    Article  CAS  Google Scholar 

  37. Ali MA, Moromi SK, Touchy AS, Shimizu K. Direct synthesis of cyclic imides from carboxylic anhydrides and amines by Nb2OS5 as a water-tolerant lewis acid catalyst. ChemCatChem 2016;8(5):891.

  38. Akhtar MS, Lee YR. Organocatalyzed Synthesis of Highly Functionalized Phthalimides via Diels–Alder Reaction Employing Two Dienophiles. J. Org. Chem. 2020;85(23):15129

  39. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. It Olex2: a complete structure solution refinement and analysis program. J Appl Crystallogr. 2009;42(2):339.

    Article  CAS  Google Scholar 

  40. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H. The anatomy of a comprehensive constrained restrained refinement program for the modern computing environment–It Olex2 dissected. Acta Crystallogr A. 2015;71(1):59.

    Article  CAS  Google Scholar 

  41. Brown ID, Altermatt D. Bond-Valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B. 1985;41(4):244.

    Article  Google Scholar 

  42. Bontchev RP, Nyman M. Evolution of polyoxoniobate cluster anions. Angew Chem Int Ed. 2006;45(40):6670.

    Article  CAS  Google Scholar 

  43. Zhang D, Cao F, Ma P, Zhang C, Song Y, Liang Z, Hu X, Wang J, Niu J. A {Nb6P2W12}-based hexameric manganese cluster with single-molecule magnet properties. Chem Eur J. 2015;21(49):17683.

    Article  CAS  Google Scholar 

  44. Abrahams SC, Collin RL, Lipscomb WN. The crystal structure of hydrogen peroxide. Acta Crystallogr. 1951;4(1):15.

    Article  CAS  Google Scholar 

  45. Roch M, Weber J, Williams AF. Electronic structure and spectroscopic properties of Chromium(V) Molybdenum(VI) and Niobium(V) tetraperoxides. Inorg Chem. 1984;23(26):4571.

    Article  CAS  Google Scholar 

  46. Ma R, Haji-Ghassemi O, Ma D, Jiang H, Lin L, Yao L, Samurkas A, Li Y, Wang Y, Cao P, Wu S, Zhang Y, Murayama T, Moussian B, Van Petegem F, Yuchi Z. Structural basis for diamide modulation of ryanodine receptor. Nat Chem Biol. 2020;16(11):1246.

    Article  CAS  Google Scholar 

  47. Kumagai N, Shibasaki M. Asymmetric catalysis with bis(hydroxyphenyl)diamides/rare-earth metal complexes. Angew Chem Int Ed. 2013;52(1):223.

    Article  CAS  Google Scholar 

  48. Yu X, Wang DS, Xu Z, Yang B, Wang D. The synthesis of unsymmetric diamides through Rh-catalyzed selective C-H bond activation of amides with isocyanates. Org Chem Front. 2017;4(6):1011.

    Article  CAS  Google Scholar 

  49. Yang G, Liu Y, Li K, Liu W, Yu B, Hu C. H3PMo12O40-catalyzed coupling of diarylmethanols with epoxides/diols/aldehydes toward polyaryl-substituted aldehydes. Chin Chem Lett. 2020;31(12):3233.

    Article  CAS  Google Scholar 

  50. Yang G, Li K, Lin X, Li Y, Cui C, Li S, Cheng Y, Liu Y. Regio- and stereoselective synthesis of (Z)-3-Lidenephthallides via H3PMo12O40-catalyzed cyclization of 2-acylbenzoic acids with benzylic alcohols. ChinJ Chem. 2021. https://doi.org/10.1002/cjoc.202100397.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 21671056 and 22071045), the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 19HASTIT044), and Excellent Youth Science Fund Project of Henan Province (Grant No. 202300410042).

Author information

Authors and Affiliations

Authors

Contributions

Wei-**n Du, Ke Li and Dong-Di Zhang wrote the draft; Meng-Yuan Cheng, Ya-Chun Ma, **g-Wen Shi and Ke Li collected the data; Ke Li and Dong-Di Zhang contributed to conceived the idea of the study. All authors contributed to the writing and revisions.

Corresponding authors

Correspondence to Ke Li or Dong-Di Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2322 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, WX., Cheng, MY., Li, K. et al. Insight into hexanuclear peroxotantalum complexes: synthesis, characterization, and efficient catalyst for amidation reaction. Tungsten 4, 158–167 (2022). https://doi.org/10.1007/s42864-021-00114-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00114-5

Keywords

Navigation