Log in

Coagulation engineering of surfactant-based wet spinning of carbon nanotube fibers

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

One of the key challenges for the commercialization of carbon nanotube fibers (CNTFs) is their large-scale economic production. Among CNTF spinning methods, surfactant-based wet spinning is one of the promising techniques for mass producing CNTFs. Here, we investigated how the coagulation bath composition affects the spinnability and the properties of CNTFs in surfactant-based wet spinning. We used acetone, DMAc, ethanol, and IPA as coagulants and analyzed the relationship between coagulation bath composition and the properties of CNTFs in terms of kinetic and thermodynamic coagulation parameters. From a kinetic perspective, we found that a low mass transfer rate difference (MTRD) is favorable for wet spinning. Based on this finding, we mixed the coagulant bath with solvent in a proper ratio to reduce the MTRD, which generally improved the wet spinning. We also showed that the coagulation strength, a thermodynamic parameter, should be considered. We believe that our research can contribute to establishment of surfactant-based wet spinning of CNTFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang X, Li Q, Holesinger TG, Arendt PN, Huang J, Kirven PD, Clapp TG, DePaula RF, Liao X, Zhao Y, Zheng L, Peterson DE, Zhu Y (2007) Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater 19:4198–4201. https://doi.org/10.1002/adma.200700776

    Article  CAS  Google Scholar 

  2. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) High-performance carbon nanotube fiber. Science 318:1892–1895. https://doi.org/10.1126/science.1147635

    Article  CAS  PubMed  Google Scholar 

  3. Taylor LW, Dewey OS, Headrick RJ, Komatsu N, Peraca NM, Wehmeyer G, Kono J, Pasquali M (2021) Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers. Carbon NY 171:689–694. https://doi.org/10.1016/j.carbon.2020.07.058

    Article  CAS  Google Scholar 

  4. Vilatela JJ, Windle AH (2010) Yarn-like carbon nanotube fibers. Adv Mater 22:4959–4963. https://doi.org/10.1002/adma.201002131

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K (2010) Scratch-resistant, highly conductive, and high-strength carbon nanotube- based composite yarns. ACS Nano 4:5827–5834

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez NT, Ochmann T, Kienzle N, Ruff B, Haase MR, Hopkins T, Pixley S, Mast D, Schulz MJ, Shanov V (2014) Polymer coating of carbon nanotube fibers for electric microcables. Nanomaterials 4:879–893. https://doi.org/10.3390/nano4040879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu Z, Song W, Burugapalli K, Moussy F, Li YL, Zhong XH (2010) Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor. Nanotechnology. https://doi.org/10.1088/0957-4484/21/16/165501

    Article  PubMed  Google Scholar 

  8. Li Y, Shang Y, He X, Peng Q, Du S, Shi E, Wu S, Li Z, Li P, Cao A (2013) Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. ACS Nano 7:8128–8135. https://doi.org/10.1021/nn403400c

    Article  CAS  PubMed  Google Scholar 

  9. Zhang HX, Feng C, Zhai YC, Jiang KL, Li QQ, Fan SS (2009) Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries. Adv Mater 21:2299–2304. https://doi.org/10.1002/adma.200802290

    Article  CAS  Google Scholar 

  10. Jang Y, Kim SM, Spinks GM, Kim SJ (2020) Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv Mater. https://doi.org/10.1002/adma.201902670

    Article  PubMed  Google Scholar 

  11. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278. https://doi.org/10.1126/science.1094982

    Article  CAS  PubMed  Google Scholar 

  12. Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306:1358–1361. https://doi.org/10.1126/science.1104276

    Article  CAS  PubMed  Google Scholar 

  13. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334. https://doi.org/10.1126/science.290.5495.1331

    Article  CAS  PubMed  Google Scholar 

  14. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, Ter Waarbeek RF, De Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186. https://doi.org/10.1126/science.1228061

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Lee DM, Kim YK, Jeong HS, Kim SM (2017) Significantly increased solubility of carbon nanotubes in superacid by oxidation and their assembly into high-performance fibers. Small 13:1–8. https://doi.org/10.1002/smll.201701131

    Article  CAS  Google Scholar 

  16. Jeong HD, Kim SG, Choi GM, Park M, Ku B-C, Lee HS (2021) Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers. Chem Eng J 412:128650. https://doi.org/10.1016/j.cej.2021.128650

    Article  CAS  Google Scholar 

  17. Jiang JJ, Shang HM, Shu Y, Li WP, Zhang H, Liu WJ, Qu MZ, Liu S (2020) Multi-walled carbon nanotube composite fiber formation in a water coagulation bath and application as wire heater. Diam Relat Mater 110:108109. https://doi.org/10.1016/j.diamond.2020.108109

    Article  CAS  Google Scholar 

  18. Parra-Vasquez ANG, Behabtu N, Green MJ, Pint CL, Young CC, Schmidt J, Kesselman E, Goyal A, Ajayan PM, Cohen Y, Talmon Y, Hauge RH, Pasquali M (2010) Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes. ACS Nano 4:3969–3978. https://doi.org/10.1021/nn100864v

    Article  CAS  PubMed  Google Scholar 

  19. Tsentalovich DE, Headrick RJ, Mirri F, Hao J, Behabtu N, Young CC, Pasquali M (2017) Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl Mater Interfaces 9:36189–36198. https://doi.org/10.1021/acsami.7b10968

    Article  CAS  PubMed  Google Scholar 

  20. Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon NY 45:618–623. https://doi.org/10.1016/j.carbon.2006.10.010

    Article  CAS  Google Scholar 

  21. Jee MH, Park SH, Choi JU, Jeong YG, Baik DH (2012) Effects of wet-spinning conditions on structures, mechanical and electrical properties of multi-walled carbon nanotube composite fibers. Fibers Polym 13:443–449. https://doi.org/10.1007/s12221-012-0443-y

    Article  CAS  Google Scholar 

  22. Im J, Jeong YH, Kim MC, Oh D, Son J, Hyun K, Jeong B, Hong S, Lee J (2024) Wet spinning of multi-walled carbon nanotube fibers. Carbon NY 216:118532. https://doi.org/10.1016/j.carbon.2023.118532

    Article  CAS  Google Scholar 

  23. Lee J, Lee DM, Jung Y, Park J, Lee HS, Kim YK, Park CR, Jeong HS, Kim SM (2019) Direct spinning and densification method for high-performance carbon nanotube fibers. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-10998-0

    Article  Google Scholar 

  24. Mukai K, Asaka K, Wu X, Morimoto T, Okazaki T, Saito T, Yumura M (2016) Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Appl Phys Express. https://doi.org/10.7567/APEX.9.055101

    Article  Google Scholar 

  25. Wu X, Morimoto T, Mukai K, Asaka K, Okazaki T (2016) Relationship between mechanical and electrical properties of continuous polymer-free carbon nanotube fibers by wet-spinning method and nanotube-length estimated by far-infrared spectroscopy. J Phys Chem C 120:20419–20427. https://doi.org/10.1021/acs.jpcc.6b06746

    Article  CAS  Google Scholar 

  26. Wu X, Mukai K, Asaka K, Morimoto T, Okazaki T (2017) Effect of surfactants and dispersion methods on properties of single-walled carbon nanotube fibers formed by wet-spinning. Appl Phys Express. https://doi.org/10.7567/APEX.10.055101

    Article  Google Scholar 

  27. Maillaud L, Headrick RJ, Jamali V, Maillaud J, Tsentalovich DE, Neri W, Bengio EA, Mirri F, Kleinerman O, Talmon Y, Poulin P, Pasquali M (2018) Highly concentrated aqueous dispersions of carbon nanotubes for flexible and conductive fibers. Ind Eng Chem Res 57:3554–3560. https://doi.org/10.1021/acs.iecr.7b03973

    Article  CAS  Google Scholar 

  28. Tajima N, Watanabe T, Morimoto T, Kobashi K, Mukai K, Asaka K, Okazaki T (2019) Nanotube length and density dependences of electrical and mechanical properties of carbon nanotube fibres made by wet spinning. Carbon NY 152:1–6. https://doi.org/10.1016/j.carbon.2019.05.062

    Article  CAS  Google Scholar 

  29. Jiang X, Gong W, Qu S, Wang D, Liu T, Li Q, Zhou G, Lu W (2020) Understanding the influence of single-walled carbon nanotube dispersion states on the microstructure and mechanical properties of wet-spun fibers. Carbon NY 169:17–24. https://doi.org/10.1016/j.carbon.2020.05.080

    Article  CAS  Google Scholar 

  30. Jiang X, Qu S, Shao Z, Gong W, Zhou G, Lu W (2021) Effect of dispersion time on the microstructural and mechanical properties of carbon nanotube solutions and their spun fibers. Compos Commun 27:100872. https://doi.org/10.1016/j.coco.2021.100872

    Article  Google Scholar 

  31. Bucossi AR, Cress CD, Schauerman CM, Rossi JE, Puchades I, Landi BJ (2015) Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing. ACS Appl Mater Interfaces 7:27299–27305. https://doi.org/10.1021/acsami.5b08668

    Article  CAS  PubMed  Google Scholar 

  32. Um IC, Kweon HY, Lee KG, Ihm DW, Lee JH, Park YH (2004) Wet spinning of silk polymer: I. Effect of coagulation conditions on the morphological feature of filament. Int J Biol Macromol 34:89–105. https://doi.org/10.1016/j.ijbiomac.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  33. Liu C-K, Cuculo JA, Smith B (1990) Diffusion competition between solvent and nonsolvent during the coagulation process of cellulose/ammonia/ammonium thiocynate fiber spinning system. J Polym Sci Part B Polym Phys 28:449–465. https://doi.org/10.1002/polb.1990.090280402

    Article  CAS  Google Scholar 

  34. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46. https://doi.org/10.1016/j.cis.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  35. Wenseleers W, Vlasov IL, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14:1105–1112. https://doi.org/10.1002/adfm.200400130

    Article  CAS  Google Scholar 

  36. Strano MS, Moore VC, Miller MK, Allen MJ, Haroz EH, Kittrell C, Hauge RH, Smalley RE (2003) The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J Nanosci Nanotechnol 3:81–86. https://doi.org/10.1166/jnn.2003.194

    Article  CAS  PubMed  Google Scholar 

  37. Kojima K, Aizawa M, Yamamoto T, Muroga S, Kobashi K, Okazaki T (2022) Liquid crystalline behaviors of single-walled carbon nanotubes in an aqueous sodium cholate dispersion. Langmuir 38:8899–8905. https://doi.org/10.1021/acs.langmuir.2c01024

    Article  CAS  PubMed  Google Scholar 

  38. Liu B, Goree J, Vaulina OS (2006) Test of the Stokes-Einstein relation in a two-dimensional yukawa liquid. Phys Rev Lett 96:1–4. https://doi.org/10.1103/PhysRevLett.96.015005

    Article  CAS  Google Scholar 

  39. Nadykto AB, Yu F (2003) Uptake of neutral polar vapor molecules by charged clusters/particles: enhancement due to dipole-charge interaction. J Geophys Res Atmos 108:1–7. https://doi.org/10.1029/2003jd003664

    Article  Google Scholar 

  40. Kim SG, Choi GM, Jeong HD, Lee D, Kim S, Ryu KH, Lee S, Kim J, Hwang JY, Kim ND, Kim DY, Lee HS, Ku BC (2022) Hierarchical structure control in solution spinning for strong and multifunctional carbon nanotube fibers. Carbon N Y 196:59–69. https://doi.org/10.1016/j.carbon.2022.04.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by 2022 BK21 FOUR Graduate School Innovation Support funded by Pusan National University (PNU-Fellowship program). This work was also supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2022R1I1A3068866) and by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (RS-2023-00258521).

Author information

Authors and Affiliations

Authors

Contributions

Y.H.J.: conceptualization, methodology, investigation, data curation, validation, visualization, and writing-original draft preparation. J.I.: methodology and investigation. D.M.L.: investigation and validation. M.C.K. and D.O.: validation and data curation. J.S.: validation and data curation. S.P.: validation and data curation. K.H. and B.J.: investigation and validation. J.L.: supervision, validation, writing-review and editing, project administration, and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jaegeun Lee.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1962 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.H., Im, J., Lee, DM. et al. Coagulation engineering of surfactant-based wet spinning of carbon nanotube fibers. Carbon Lett. 34, 1803–1815 (2024). https://doi.org/10.1007/s42823-024-00735-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-024-00735-z

Keywords

Navigation