Log in

Electrophoresis-deposition construction of covalently bonded interface material with enhanced thermal conductivity

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The thermal conductivity (TC) of graphene-based/metal composites is currently not satisfactory because of the existence of large interfacial thermal resistance between graphene and metal originating from the strong scattering of phonons. In this work, 6063Al-alloy-based reduced graphene oxide (rGO) composite with strong covalent bonds interface was prepared via self-assembly, reduction, and electrophoresis-deposition processes by using 3-aminopropyl triethoxysilane (APTS) as a link agent. Structural characterizations confirmed the successful construction of strong Al-O-Si-O-C covalent bonds in the as-prepared 6063Al-Ag-APTS-rGO composite, which can promote the transfer of phonons in the interface. Benefiting from the unique structure, 6063Al-Ag-APTS-rGO (214.1 W/mK) showed obviously higher cross-plane TC than 6063Al (195.6 W/mK). Comparative experiments showed that 6063Al-Ag-APTS-rGO has better cross-plane TC than 6063Al/Ag/APTS/rGO (196.6 W/mK) prepared via physical mixing of stirring process, evidencing the significance of electrophoresis-deposition (EPD) process on constructing strong covalent bonds for improving the heat dissipation performance. Besides, the effects of different rGO contents and test temperature on the TC of the composites and their corrosion resistance were also discussed. This work demonstrated a feasible strategy for the construction of metal–carbon interface composite with improved thermal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Qiu L et al (2019) Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 141:497–505. https://doi.org/10.1016/j.carbon.2018.09.073

    Article  CAS  Google Scholar 

  2. Huang Y et al (2017) Fabrication and thermal conductivity of copper coated graphite film/aluminum composites for effective thermal management. J Alloys Compd 711:22–30. https://doi.org/10.1016/j.jallcom.2017.03.233

    Article  CAS  Google Scholar 

  3. Mohamed MG, Kuo SW (2019) Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol Chem Phys. https://doi.org/10.1002/macp.201800306

    Article  Google Scholar 

  4. Garimella SV, Yeh L-T, Persoons T (2012) Thermal management challenges in telecommunication systems and data centers. Trans Compon Packag Manufact Technol 2:1307–1316

    Article  Google Scholar 

  5. Cao S (2023) Investigation on thermal conductivity of dimethyl silicone oil modified by graphene nanosheets. Carbon Lett 33:2153–2159. https://doi.org/10.1007/s42823-023-00581-5

    Article  Google Scholar 

  6. Jia Y, He H, Geng Y, Huang B, Peng X (2017) High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos Sci Technol 145:55–61. https://doi.org/10.1016/j.compscitech.2017.03.035

    Article  CAS  Google Scholar 

  7. Jiao J, Cui Y, **a Y (2016) Improved thermal conductivity of epoxy composites prepared with a mixed filler of multiwalled carbon nanotubes and aluminum nitride particles. High Perform Polym 29:484–492. https://doi.org/10.1177/0954008316644036

    Article  CAS  Google Scholar 

  8. Suresh S, Venkatesan K, Natarajan E (2018) Influence of SiC nanoparticle reinforcement on FSS welded 6061–T6 aluminum alloy. J Nanomater. https://doi.org/10.1155/2018/7031867

    Article  Google Scholar 

  9. Jeon C-H et al (2014) Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int J Precis Eng Manuf 15:1235–1239. https://doi.org/10.1007/s12541-014-0462-2

    Article  Google Scholar 

  10. Chen S et al (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11:203–207. https://doi.org/10.1038/nmat3207

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L et al (2019) Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy. https://doi.org/10.1016/j.apenergy.2018.10.036

    Article  Google Scholar 

  12. Mohan Krishna SA, Shridhar TN, Krishnamurthy L, Vinay KB, Prakash GVN (2018) Relevance, research prospect and applications of aluminium-silicon carbide-graphite hybrid metal matrix composites for thermal characterization. Int J Curr Eng Technol https://doi.org/10.14741/ijcet/v.8.2.26

  13. Samal A et al (2023) Thermal and electrical conductivity of copper-graphene heterosystem: an effect of strain and thickness. Adv Eng Mater. https://doi.org/10.1002/adem.202201192

    Article  Google Scholar 

  14. Yao S-S, Lee S-Y, Li H-L, ** F-L, Park S-J (2023) Enhanced thermal conductivity of carbon fibers/silanized graphene/epoxy matrix composites. Carbon Lett. https://doi.org/10.1007/s42823-023-00649-2

    Article  Google Scholar 

  15. Stephen JT, Adebayo A, Adeyemi GJ (2018) Influence of solidification rates and stress-relief annealing on the mechanical properties of cast 6063 aluminium alloy. Eur J Eng Res Sci 3:71 https://doi.org/10.24018/ejers.2018.3.5.750

  16. Prasad BL et al (2018) Joining of AZ91 Mg alloy and Al6063 alloy sheets by friction stir welding. J Magnes Alloys 6:71–76. https://doi.org/10.1016/j.jma.2017.12.004

    Article  CAS  Google Scholar 

  17. Lokesh N et al (2018) Mechanical characterization of stir cast Al 6063 TiO2-Cu reinforced hybrid metal matrix composites. Mater Today Proc 5:18383–18392. https://doi.org/10.1016/j.matpr.2018.06.178

    Article  CAS  Google Scholar 

  18. Singh T (2017) Comprehensive study & behaviour of Al-6063/red mud metal matrix composite. Int J All Res Educ Scient Methods 5:53–58

    Google Scholar 

  19. Paul S, Sharma GR (2017) Evaluation of mechanical properties of Al6063 alloy MMC reinforced with SiC and coconut shell ash. Int Adv Res J Sci Eng Technol 4:79–83. https://doi.org/10.17148/iarjset.2017.4811

  20. Yang X et al (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230. https://doi.org/10.1007/s42114-018-0031-8

    Article  Google Scholar 

  21. Kumbhar AP, Vyavahare RT, Kulkarni SG (2018) Vibrational response and mechanical properties characterization of aluminium alloy 6061/Sic composite. 1964:020036. https://doi.org/10.1063/1.5038715

  22. Jagadeesh N, Senthil Kumar AP, Janaki S (2018) Studies on mechanical and thermal behaviors of Al6061- SiC-Gr-ZrO2 nanohybrid composites. Mater Res Express 5:116501. https://doi.org/10.1088/2053-1591/aadbf6

    Article  CAS  Google Scholar 

  23. Lee G et al (2023) Ultrathin metal film on graphene for percolation-threshold-limited thermal emissivity control. Adv Mater. https://doi.org/10.1002/adma.202301227

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dai W et al (2023) Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. https://doi.org/10.1007/s40820-022-00979-2

    Article  Google Scholar 

  25. Zhang XL et al (2023) Nerve-fiber-inspired construction of 3d graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv Funct Mater. https://doi.org/10.1002/adfm.202213274

    Article  PubMed  Google Scholar 

  26. Feng T, Lindsay L, Ruan X (2017) Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys Rev B. https://doi.org/10.1103/PhysRevB.96.161201

    Article  Google Scholar 

  27. Kang JS, Wu H, Hu Y (2017) Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett 17:7507–7514. https://doi.org/10.1021/acs.nanolett.7b03437

    Article  CAS  PubMed  Google Scholar 

  28. **e G et al (2014) A bond-order theory on the phonon scattering by vacancies in two-dimensional materials. Scient Rep 4:5085. https://doi.org/10.1038/srep05085

    Article  CAS  Google Scholar 

  29. Mao J, Wang Y, Liu Z, Ge B, Ren Z (2017) Phonon scattering by nanoscale twin boundaries. Nano Energy 32:174–179. https://doi.org/10.1016/j.nanoen.2016.12.026

    Article  CAS  Google Scholar 

  30. Yang X, Dai Z, Zhao Y, Meng S (2018) Phonon thermal transport in a class of graphene allotropes from first principles. Phys Chem Chem Phys 20:15980–15985. https://doi.org/10.1039/c8cp00987b

    Article  CAS  PubMed  Google Scholar 

  31. Koh YK et al (2016) Role of remote interfacial phonon (RIP) scattering in heat transport across graphene/SiO2 interfaces. Nano Lett 16:6014–6020. https://doi.org/10.1021/acs.nanolett.6b01709

    Article  CAS  PubMed  Google Scholar 

  32. Gu X, Fan Z, Bao H, Zhao CY (2019) Revisiting phonon-phonon scattering in single-layer graphene. Phys Rev B 100:064306. https://doi.org/10.1103/PhysRevB.100.064306

    Article  CAS  Google Scholar 

  33. Guo X et al (2023) Substrate effect on phonon in graphene layers. Carbon Lett 33:1359–1365. https://doi.org/10.1007/s42823-022-00400-3

    Article  Google Scholar 

  34. Primeaux PA et al (2017) Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing. J Micromech Microeng 27:025012. https://doi.org/10.1088/1361-6439/aa53c9

    Article  CAS  Google Scholar 

  35. Alaili K, Ordonez-Miranda J, Ezzahri Y (2018) Effective interface thermal resistance and thermal conductivity of dielectric nanolayers. Int J Therm Sci 131:40–47. https://doi.org/10.1016/j.ijthermalsci.2018.05.024

    Article  CAS  Google Scholar 

  36. Wang D et al (2017) Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration. Ceram Int 43:1755–1761. https://doi.org/10.1016/j.ceramint.2016.10.104

    Article  CAS  Google Scholar 

  37. Kim D et al (2018) Paved phonon transport route in graphene by vapor phase process. Int J Therm Sci 133:266–272. https://doi.org/10.1016/j.ijthermalsci.2018.07.040

    Article  CAS  Google Scholar 

  38. Boinovich LB, Emelyanenko AM, Modestov AD, Domantovsky AG, Emelyanenko KA (2015) Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment. ACS Appl Mater Interfaces 7:19500–19508. https://doi.org/10.1021/acsami.5b06217

    Article  CAS  PubMed  Google Scholar 

  39. Li XF et al (2022) Preparation of graphene/copper composites with a thiophenol molecular junction for thermal conduction application. New J Chem 46:10107–10116. https://doi.org/10.1039/d2nj00374k

    Article  CAS  Google Scholar 

  40. Wang M et al (2014) Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6:1747–1753. https://doi.org/10.1021/am404719u

    Article  CAS  PubMed  Google Scholar 

  41. Dai W et al (2022) Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett 15:9. https://doi.org/10.1007/s40820-022-00979-2

    Article  CAS  Google Scholar 

  42. Zheng W, McClellan CJ, Pop E, Koh YK (2022) Nonequilibrium phonon thermal resistance at MoS2/oxide and graphene/oxide interfaces. ACS Appl Mater Interfaces 14:22372–22380. https://doi.org/10.1021/acsami.2c02062

    Article  CAS  PubMed  Google Scholar 

  43. Villaroman D et al (2017) Interfacial thermal resistance across graphene/Al2O3 and graphene/metal interfaces and post-annealing effects. Carbon 123:18–25. https://doi.org/10.1016/j.carbon.2017.07.039

    Article  CAS  Google Scholar 

  44. Zhao Y et al (2021) Modulating thermal conductance across the metal/graphene/SiO2 interface with ion irradiation. Phys CHEM Chem Phys 23:22760–22767. https://doi.org/10.1039/d1cp03563k

    Article  CAS  PubMed  Google Scholar 

  45. Hwang J et al (2020) Graphene encapsulated Al particles for improvement of thermal conductivity in composites. Materials 13:3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang T et al (2016) Covalent bonding modulated graphene-metal interfacial thermal transport. Nanoscale 8:10993–11001. https://doi.org/10.1039/c6nr00979d

    Article  CAS  PubMed  Google Scholar 

  47. Fang H, Zhao Y, Zhang Y, Ren Y, Bai SL (2017) Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl Mater Interfaces 9:26447–26459. https://doi.org/10.1021/acsami.7b07650

    Article  CAS  PubMed  Google Scholar 

  48. Ren F et al (2018) Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J Mater Chem C 6:1476–1486. https://doi.org/10.1039/c7tc05213h

    Article  CAS  Google Scholar 

  49. Guo Y et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015. https://doi.org/10.1039/c8tc00452h

    Article  CAS  Google Scholar 

  50. Li S et al (2016) 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 30:780–789. https://doi.org/10.1016/j.nanoen.2016.09.018

    Article  CAS  Google Scholar 

  51. Mehta R, Chugh S, Chen Z (2015) Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Lett 15:2024–2030. https://doi.org/10.1021/nl504889t

    Article  CAS  PubMed  Google Scholar 

  52. Hou H et al (2018) Enhanced electrical and thermal conduction in contributing to the superior thermal conductivity of epoxy composites. J Mater Chem A 6:12091–12097. https://doi.org/10.1039/c8ta03937b

    Article  CAS  Google Scholar 

  53. Novoselov KS et al (2012) A roadmap for graphene. Nature 490:192–200. https://doi.org/10.1038/nature11458

    Article  CAS  PubMed  Google Scholar 

  54. Wejrzanowski T et al (2016) Thermal conductivity of metal-graphene composites. Mater Design 99:163–173. https://doi.org/10.1016/j.matdes.2016.03.069

    Article  CAS  Google Scholar 

  55. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581. https://doi.org/10.1038/nmat3064

    Article  CAS  PubMed  Google Scholar 

  56. Lu B-M, ** X-Y, Tang J, Bi S-P (2010) DFT studies of Al–O Raman vibrational frequencies for aquated aluminium species. J Mol Struct 982:9–15. https://doi.org/10.1016/j.molstruc.2010.07.012

    Article  CAS  Google Scholar 

  57. Chu K et al (2018) Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon 127:102–112. https://doi.org/10.1016/j.carbon.2017.10.099

    Article  CAS  Google Scholar 

  58. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR (2017) Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog Org Coat 111:47–56. https://doi.org/10.1016/j.porgcoat.2017.05.008

    Article  CAS  Google Scholar 

  59. Xu Y, Tanaka Y, Goto M, Zhou Y, Yagi K (2004) Thermal conductivity of SiC fine particles reinforced Al alloy matrix composite with dispersed particle size. J Appl Phys 95:722–726. https://doi.org/10.1063/1.1632022

    Article  CAS  Google Scholar 

  60. Figueiredo NM, Carvalho NJM, Cavaleiro A (2011) An XPS study of Au alloyed Al–O sputtered coatings. Appl Surf Sci 257:5793–5798. https://doi.org/10.1016/j.apsusc.2011.01.104

    Article  CAS  Google Scholar 

  61. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  62. Yao Y et al (2016) Significant enhancement of thermal conductivity in bioinspired freestanding boron nitride papers filled with graphene oxide. Chem Mater 28:1049–1057. https://doi.org/10.1021/acs.chemmater.5b04187

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Basic Industrial Technology Projects of WenZhou City (G20210017).

Author information

Authors and Affiliations

Authors

Contributions

Hao Fu wrote the main manuscript text and prepared all figures. All other authors reviewed the manuscript.

Corresponding authors

Correspondence to Hao Fu or Youguo Huang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1525 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Chen, G., Gao, J. et al. Electrophoresis-deposition construction of covalently bonded interface material with enhanced thermal conductivity. Carbon Lett. 34, 1507–1519 (2024). https://doi.org/10.1007/s42823-024-00717-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-024-00717-1

Keywords

Navigation