Log in

Ambient synthesis of diamond in saline alcohol

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We report a simple benchtop method to synthesize diamonds from ethyl alcohol (C2H6O) at ambient pressure and room temperature via solvothermal reactions in a liquid solution of table salt (NaCl) and their structural characterization using electron diffraction and high-resolution electron microscopy. In addition to the usual cubic phase of diamond, the hexagonal phase of diamond (lonsdaleite) has also been obtained and identified unambiguously. Many of the synthesized diamonds often contain structural defects including twinnings, stacking faults, and dislocations. The formation and growth of diamond under ambient conditions provide further insights into understanding of the natural existence of diamond on Earth as well as in outer space. While only nanometric diamonds have been observed in the present study, we believe this discovery will open up new ways that have long been sought to grow diamonds, including large size diamonds, in organic solutions at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tennant S (1796) On the nature of the diamond. Philos Trans R Soc Lond 87:123–127

    Google Scholar 

  2. Bragg WH, Bragg WL (1913) The structure of the diamond. Proc R Soc (Lond.) A 89:277

    Google Scholar 

  3. Field JE (1992) Properties of natural and synthetic diamond. Academic Press, Berlin

    Google Scholar 

  4. Prawer S, Greentree AD (2008) Diamond for quantum computing. Science 320:1601–1602

    Article  CAS  PubMed  Google Scholar 

  5. Mellor JW (1924) A Comprehensive treatise on inorganic and theoretical chemistry. Longmans, London

  6. Haggerty SE (1986) Diamond genesis in a multiply-constrained model. Nature 320:34–38

    Article  CAS  Google Scholar 

  7. Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746

    Article  CAS  Google Scholar 

  8. Pal’yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418

    Article  Google Scholar 

  9. Bundy FP, Hall HT, Strong HM, Wentorf RH (1955) Man-made diamonds. Nature 176:51

    Article  CAS  Google Scholar 

  10. Bovenkerk HP, Bundy FP, Hall HT, Strong HM, Wentorf RH (1959) Preparation of diamond. Nature 184:1094–1098

    Article  CAS  Google Scholar 

  11. DeCarli PS, Jamieson JC (1961) Formation of diamond by explosive rock. Science 133:1821–1823

    Article  CAS  PubMed  Google Scholar 

  12. Angus JC, Will HA, Stanko WS (1968) Growth of diamond seed crystals by vapor deposition. J Appl Phys 39:2915–2922

    Article  CAS  Google Scholar 

  13. Matsumoto S, Sato Y, Tsutsumi M, Setaka N (1982) Growth of diamond particles from methane-hydrogen gas. J Mater Sci 17:3106–3112

    Article  CAS  Google Scholar 

  14. Angus JC, Hayman CC (1988) Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241:913–921

    Article  CAS  PubMed  Google Scholar 

  15. Narayan J, Godbole VP, White CW (1991) Laser method for synthesis and processing of continuous diamond films on non-diamond substrates. Science 252:416–418

    Article  CAS  PubMed  Google Scholar 

  16. Zhou D, McCauley TG, Qin L-C, Krauss AR, Gruen DM (1998) Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma. J Appl Phys 83:540–543

    Article  CAS  Google Scholar 

  17. Qin L-C, Zhou D, Krauss AR, Gruen DM (1998) TEM characterization of nanodiamond thin films. Nanostruct Mater 10:649–660

    Article  CAS  Google Scholar 

  18. Banhart F, Ajayan PM (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382:433–435

    Article  CAS  Google Scholar 

  19. Pearson DG, Davies GR, Nixon PH, Milledge HJ (1989) Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 338:60–62

    Article  Google Scholar 

  20. Kanaan A, Nitta A, Winget DE, Kepler SO, Montgomery MH, Metcalfe TS et al (2005) Whole Earth Telescope observations of BPM 37093: a seismological test of crystallization theory in white dwarfs. Astro Astrophys 432:219–224

    Article  CAS  Google Scholar 

  21. Kaplan DL, Boyles J, Dunlop BH, Tendulkar SP, Deller AT, Ransom SM, McLaughlin MA, Lorimer DR, Stairs IH (2014) A 1.05 M☉ companion to PSR J2222–0137: the coolest known white dwarf? Astrophys J 789:119

    Article  Google Scholar 

  22. Lonsdale K (1962) Further comments on attempts by H. Moissan, J.B. Hannay and Sir Charles Parsons to make diamonds in the laboratory. Nature 196:104–106

    Article  Google Scholar 

  23. Zhang W, Fan B, Zhang Y, Fan J (2017) Hydrothermal synthesis of well crystallized C8 and diamond nanocrystals and pH-controlled C8 ↔ diamond phase transition. CrystEngComm 19:1248–1252

    Article  CAS  Google Scholar 

  24. Ma X, Liu X, Li Y, ** X, Yao Q, Fan J (2020) Influence of crystallization temperature on flurenscence of n-diamond quantum dots. Nanotechnology 31:505712

    Article  CAS  PubMed  Google Scholar 

  25. Dai D, Li Y, Fan J (2021) Room-temperature synthesis of various allotropes of carbon nanostructures (graphene, graphene polyhedral, carbon nanotubes and nano-onions, n-diamond nanocrystals) with aid of ultrasonic shock using ethanol and potassium hydroxide. Carbon 179:133–141

    Article  CAS  Google Scholar 

  26. Frondel C, Marvin UB (1967) Lonsdaleite Nature 214:587–589

    Article  CAS  Google Scholar 

  27. Kaminskii FV, Blinova GK, Galimov EM, Gurkina GA, Klyuev YA, Kodina LA, Koptil VI, Krivonos VF, Frolova LN, Khrenov AY (1985) Mineral. Zhurnal 7:27–36

    CAS  Google Scholar 

  28. McCulloch DG, Wong S, Shiell TB, Haberl B, Cook BA, Huang X, Boehler R, McKenzie DR, Bradby JE (2020) Investigation of room temperature formation of the ultra-hard nanocarbons diamond and lonsdaleite. Small 16:2004695

    Article  CAS  Google Scholar 

  29. Volz TJ, Gupta YM (2021) Elastic moduli of hexagonal diamond and cubic diamond formed under shock compression. Phys Rev B 103:L100101

    Article  CAS  Google Scholar 

  30. Nemeth P, Garvie LAJ, Aoki T, Dubrovinskaia N, Dubrovinsky L, Buseck PR (2014) Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat Commun 5:ncomms6447

    Article  Google Scholar 

  31. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953

    Article  CAS  Google Scholar 

  32. Dahl JE, Liu SG, Carlson RMK (2003) Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299:96–99

    Article  CAS  PubMed  Google Scholar 

  33. Jimenez-Cruz F, Garcia-Gutierrez JL (2020) Molecular size and shape properties of diamondoid molecules occurring in crude oil. Arab J Chem 13:8592–8599

    Article  CAS  Google Scholar 

  34. Park S, Abate II, Liu J, Wang C, Dahl JEP, Carlson RMK, Yang L, Prakapenka VB, Greenberg E, Devereaux TP, Jia C, Ewing RC, Mao WL, Lin Y (2020) Facile diamond synthesis from lower diamondoids. Sci Adv 6:eaay9405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc A 362:2477–2512

    Article  CAS  Google Scholar 

  36. Osswald S, Mochalin VN, Havel M, Yushin G, Gogotsi Y (2009) Phonon confinement effects in the Raman spectrum of nano-diamond. Phys Rev B 80:075419

    Article  Google Scholar 

  37. Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524:339–342

    Article  CAS  PubMed  Google Scholar 

  38. Förster MW, Foley SF, Marschall HR, Alard O, Buhre S (2019) Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds. Sci Adv 5:eaau2620

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Tang or Lu-Chang Qin.

Ethics declarations

Conflict of interest

No conflict of interest is claimed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Tang, J. & Qin, LC. Ambient synthesis of diamond in saline alcohol. Carbon Lett. 34, 657–663 (2024). https://doi.org/10.1007/s42823-023-00656-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00656-3

Keywords

Navigation