Log in

Recent advance of single atom-based photocatalysts for energy conversion and environmental purification

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Develo** the high-performance semiconductor photocatalytic materials is an eternal topic under the background of the current energy and environment requirements. In recent years, single-atom photocatalysts (SAPCs) have been brought a lot of attention in energy conversion and environmental purification because of their unique characteristics and properties, including the unique coordination patterns, outstanding atomic utilization, quantum confinement effects, high catalytic activity, etc. Hence, this critical review focuses on the summarized various synthetic methods and the recent important applications of SAPCs, including photocatalytic H2 evolution (PHE) from water splitting, photocatalytic CO2 reduction, photodegradation of organic pollutants, etc. The prospects and challenges for future research topics of SAPCs with excellent activity and stability for various photocatalytic applications are prospected at the end of this review. We sincerely expect that this critical review can promote deep-level insight into the SAPCs subject for the future significant applications in other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. Chen R, Ren Z, Liang Y, Zhang G, Dittrich T, Liu R, Liu Y, Zhao Y, Pang S, An H, Ni C, Zhou P, Han K, Fan F, Li C (2022) Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610:296–301

    CAS  Google Scholar 

  2. Che H, Gao X, Chen J, Hou J, Ao Y, Wang P (2021) Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew Chem Int Ed 60:25546–25550

    CAS  Google Scholar 

  3. Ruan X, Cui X, Cui Y, Fan X, Li Z, **e T, Ba K, Jia G, Zhang H, Zhang L, Zhang W, Zhao X, Leng J, ** S, Singh D, Zheng W (2022) Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv Energy Mater 12:2200298

    CAS  Google Scholar 

  4. Ma Y, Liu Y (2022) Preparation of graphene-ZnO composite with enhanced photocatalytic performance. Carbon Lett 32:1265–1275

    Google Scholar 

  5. Zhang Q, **a Y, Cao S (2021) Environmental phosphorylation” boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air–liquid–solid joint interfaces. Chin J Catal 42:1667–1676

    CAS  Google Scholar 

  6. Li C, Wu H, Zhu D, Zhou T, Yan M, Chen G, Sun J, Dai G, Ge F, Dong H (2021) High-efficient charge separation driven directionally by pyridine rings grafted on carbon nitride edge for boosting photocatalytic hydrogen evolution. Appl Catal B-Environ 297:120433

    CAS  Google Scholar 

  7. Syed N, Huang J, Feng Y (2022) CQDs as emerging trends for future prospect in enhancement of photocatalytic activity. Carbon Lett 32:81–97

    Google Scholar 

  8. Wan S, Xu J, Cao S, Yu J (2022) Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscip Mater 1:294–308

    Google Scholar 

  9. Zhao G, Li B, Yang X, Zhang X, Li Z, Jiang D, Du H, Zhu C, Li H, Xue C, Yuan Y (2022) Two birds with one stone: engineering polymeric carbon nitride with n-π* electronic transition for extended light absorption and reduced charge recombination. Adv Powder Mater 2:100077

    Google Scholar 

  10. Dong H, Zuo Y, Song N, Hong S, **ao M, Zhu D, Sun J, Chen G, Li C (2021) Bimetallic synergetic regulating effect on electronic structure in cobalt/vanadium co-doped carbon nitride for boosting photocatalytic performance. Appl Catal B-Environ 287:119954

    CAS  Google Scholar 

  11. Den H, Zhu X, Chen Z, Zhao K, Cheng G (2022) Oxygen vacancy engineering of TiO2-x nanostructures for photocatalytic CO2 reduction. Carbon Lett 32:1671–1680

    Google Scholar 

  12. Li C, Zhu D, Cheng S, Zuo Y, Wang Y, Ma C, Dong H (2022) Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chin Chem Lett 33:1141–1153

    CAS  Google Scholar 

  13. Jiang J, Zou Y, Arramel LF, Wang J, Zou J, Li N (2021) Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J Mater Chem A 9:24195–24214

    CAS  Google Scholar 

  14. ** T, Liu C, Chen F, Qian J, Qiu Y, Meng X, Chen Z (2022) Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for Rhodamine B. Carbon Lett 32:1451–1462

    Google Scholar 

  15. Ruan X, Cui X, Jia G, Wu J, Zhao J, Singh D, Liu Y, Zhang H, Zhang L, Zheng W (2022) Intramolecular heterostructured carbon nitride with heptazine-triazine for enhanced photocatalytic hydrogen evolution. Chem Eng J 428:132579

    CAS  Google Scholar 

  16. Li M, Sun J, Chen G, Yao S, Cong B (2022) Construction double electric field of sulphur vacancies as medium ZnS/Bi2S3-PVDF self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance. Appl Catal B-Environ 301:120792

    CAS  Google Scholar 

  17. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    CAS  Google Scholar 

  18. Xue Z, Luan D, Zhang H, Lou X (2022) Single-atom catalysts for photocatalytic energy conversion. Joule 6:92–133

    CAS  Google Scholar 

  19. Gao C, Low J, Long R, Kong T, Zhu J, **ong Y (2020) Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev 120:12175–12216

    CAS  Google Scholar 

  20. Wang J, Xu L, Wang T, Chen S, Jiang Z, Li R, Zhang Y, Peng T (2021) Porphyrin conjugated polymer with periodic typeII-like heterojunctions and single-atom catalytic sites for broadband-responsive hydrogen evolution. Adv Funct Mater 31:2009819

    CAS  Google Scholar 

  21. Shangguan Y, Zhou Y, Zheng R, Feng X, Gea Q, Wang R, Yang D, Wei W, Wu X, Lin J, Chen H (2021) Bandgap engineering of tetragonal phase CuFeS2 quantum dots via mixed-valence single-atomic Ag decoration for synergistic Cr(VI) reduction and RhB degradation. Chin Chem Lett 32:3450–3456

    CAS  Google Scholar 

  22. Gao W, Li S, He H, Li X, Cheng Z, Yang Y, Wang J, Shen Q, Wang X, **ong Y, Zhou Y, Zou Z (2021) Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat Commun 12:4747

    CAS  Google Scholar 

  23. Xu Q, Zhang J, Wang D, Li Y (2021) Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin Chem Lett 32:3771–3781

    CAS  Google Scholar 

  24. Swain S, Altaee A, Saxena M, Samal A (2022) A comprehensive study on heterogeneous single atom catalysis: current progress, and challenges. Coordin Chem Rev 470:214710

    CAS  Google Scholar 

  25. Gao M, Tian F, Zhang X, Liu Y, Chen Z, Yu Y, Yang W, Hou Y (2022) Fast charge separation and transfer strategy in polymeric carbon nitride for efficient photocatalytic H2 evolution: coupling surface schottky junctions and interlayer charge transfer channels. Nano Energy 103:107767

    CAS  Google Scholar 

  26. Jiang W, Zhao Y, Zong X, Nie H, Niu L, An L, Qu D, Wang X, Kang Z, Sun Z (2021) Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew Chem Int Ed 60:6124–6129

    CAS  Google Scholar 

  27. Shangguan Y, Zheng R, Ge Q, Feng X, Wang R, Zhou Y, Luo S, Duan L, Lin J, Chen H (2022) Interfacial engineering of CuFeS2 quantum dots via platinum decoration with enhanced Cr(VI) reduction dynamics under UV–vis-NIR radiation. J Hazard Mater 421:126701

    CAS  Google Scholar 

  28. Zhang F, Zhang J, Wang H, Li J, Liu H, ** X, Wang X, Zhang G (2021) Single tungsten atom steered band-gap engineering for graphitic carbon nitride ultrathin nanosheets boosts visible-light photocatalytic H2 evolution. Chem Eng J 424:130004

    CAS  Google Scholar 

  29. Han C, Qi R, Sun R, Fan K, Bernt J, Qi D, Cao S, Xu J (2023) Enhanced support effects in single-atom copper-incorporated carbon nitride for photocatalytic suzuki cross-coupling reactions. Appl Catal B-Environ 320:121954

    CAS  Google Scholar 

  30. Huang Y, Li D, Feng S, Jia Y, Guo S, Wu X, Chen M, Shi W (2022) Pt Atoms/clusters on Ni-phytate-sensitized carbon nitride for enhanced NIR-light-driven overall water splitting beyond 800 nm. Angew Chem Int Ed 61:e202212234

    CAS  Google Scholar 

  31. Liu M, Liu X, Fu D, **e Z, Zou X, Liu W, Yu Y, Wang J, Wang H, Tong C, Cheng Z, Wu S, Ding K (2022) A facile complexing agent-assistant single atom Ag-N3S1 site photodeposition strategy. Appl Catal B-Environ 318:121896

    CAS  Google Scholar 

  32. Selvakumar K, Wang Y, Lu Y, Tian B, Zhang Z, Hu J, Raja A, Arunpandian M, Swaminathan M, Dai H, Sui M (2022) Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient photodecomposition of antibiotic residues under visible light illumination. Appl Catal B-Environ 300:120740

    CAS  Google Scholar 

  33. Lee B, Park S, Kim M, Sinha A, Lee S, Jung E, Chang W, Lee K, Hyun Kim J, Cho S, Kim H, Nam K, Hyeon T (2019) Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat Mater 18:620–626

    CAS  Google Scholar 

  34. Zhao Q, Yao W, Huang C, Wu Q, Xu Q (2017) Effective and durable Co single atomic cocatalysts for photocatalytic hydrogen production. ACS Appl Mater Interfaces 9:42734–42741

    CAS  Google Scholar 

  35. **ang Y, Dong W, Wang P, Wang S, Ding X, Ichihara F, Wang Z, Wada Y, ** S, Weng Y, Chen H, Ye J (2020) Constructing electron delocalization channels in covalent organic frameworks powering CO2 photoreduction in water. Appl Catal B-Envirn 274:119096

    CAS  Google Scholar 

  36. Ma X, Liu H, Yang W, Mao G, Zheng L, Jiang H (2021) Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J Am Chem Soc 143:12220–12229

    CAS  Google Scholar 

  37. Sharma P, Kumar S, Tomanec O, Petr M, Chen J, Miller J, Varma R, Gawande M, Zbořil R (2021) Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small 17:2006478

    CAS  Google Scholar 

  38. Luo H, Liu Y, Dimitrov S, Steier L, Guo S, Li X, Feng J, **e F, Fang Y, Sapelkin A, Wang X, Titirici M (2020) Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. J Mater Chem A 8:14690–14696

    CAS  Google Scholar 

  39. Qiu S, Shen Y, Wei G, Yao S, ** W, Shu M, Si R, Zhang M, Zhu J, An (2019) Carbon dots decorated ultrathin CdS nanosheets enabling in-situ anchored Pt single atoms: a highly efficient solar-driven photocatalyst for hydrogen evolution. Appl Catal B-Environ 259:118036

    CAS  Google Scholar 

  40. Li C, Su N, Wu H, Liu C, Che G, Dong H (2022) Synergies of adjacent sites in atomically dispersed ruthenium toward achieving stable hydrogen evolution. Inorg Chem 61:13453–13461

    CAS  Google Scholar 

  41. Xu T, Zhao H, Zheng H, Zhang P (2020) Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water. Chem Eng J 385:123832

    CAS  Google Scholar 

  42. **ong X, Mao C, Yang Z, Zhang Q, Waterhouse G, Gu L, Zhang T (2020) Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv Energy Mater 10:2002928

    CAS  Google Scholar 

  43. Wang T, Tao X, Li X, Zhang K, Liu S, Li B (2021) Synergistic Pd single atoms, clusters, and oxygen vacancies on TiO2 for photocatalytic hydrogen evolution coupled with selective organic oxidation. Small 17:2006255

    CAS  Google Scholar 

  44. Fang X, Shang Q, Wang Y, Jiao L, Yao T, Li Y, Zhang Q, Luo Y, Jiang H (2018) Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 30:1705112

    Google Scholar 

  45. Chen Y, Ji S, Sun W, Lei Y, Wang Q, Li A, Chen W, Zhou G, Zhang Z, Wang Y, Zheng L, Zhang Q, Gu L, Han X, Wang D, Li Y (2020) Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed 59:1295–1301

    CAS  Google Scholar 

  46. Zhou P, Lv F, Li N, Zhang Y, Mu Z, Tang Y, Lai J, Chao Y, Luo M, Lina F, Zhou J, Su D, Guo S (2019) Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56:127–137

    CAS  Google Scholar 

  47. Yu Y, Dong X, Chen P, Geng Q, Wang H, Li J, Zhou Y, Dong F (2021) Synergistic effect of Cu single atoms and Au–Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction. ACS Nano 15:14453–14464

    CAS  Google Scholar 

  48. Zhou P, Chao Y, Lv F, Wang K, Zhang W, Zhou J, Chen H, Wang L, Li Y, Zhang Q, Gu L, Guo S (2020) Metal single atom strategy greatly boosts photocatalytic methyl activation and C–C coupling for the coproduction of high-value added multicarbon compounds and hydrogen. ACS Catal 10:9109–9114

    CAS  Google Scholar 

  49. Sharma P, Kumar S, Tomanec O, Petr M, Chen J, Miller J, Varma R, Gawande M, Zboři R (2021) Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small 17:2006478

    CAS  Google Scholar 

  50. Yan T, Li N, Wang L, Ran W, Duchesne P, Wan L, Nguyen N, Wang L, **a M, Ozin G (2020) Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat Commun 11:6095

    CAS  Google Scholar 

  51. Ni L, **ao Y, Zhou X, Jiang Y, Liu Y, Zhang W, Zhang J, Liu Z (2022) Significantly enhanced photocatalytic performance of the g-C3N4/sulfur-vacancy-containing Zn3In2S6 heterostructure for photocatalytic H2 and H2O2 generation by coupling defects with heterojunction engineering. Inorg Chem 61:19552–19566

    CAS  Google Scholar 

  52. Li M, Sun J, Chen G, Yao S, Cong B, Liu P (2021) Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity. Appl Catal B-Environ 298:120573

    CAS  Google Scholar 

  53. Zhou T, Zhang P, Zhu D, Cheng S, Dong H, Wang Y, Che G, Niu Y, Yan M, Li C (2022) Synergistic effect triggered by skeleton delocalization and edge induction of carbon nitride expedites photocatalytic hydrogen evolution. Chem Eng J 442:136190

    CAS  Google Scholar 

  54. Ruan X, Huang C, Cheng H, Zhang Z, Cui Y, Li Z, **e T, Ba K, Zhang H, Zhang L, Zhao X, Leng J, ** S, Zhang W, Zheng W, Ravi SK, Jiang Z, Cui X, Yu J (2022) A twin S-Scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate. Adv Mater 35:2209141

    Google Scholar 

  55. Zhou T, Shi J, Li G, Liu B, Hu B, Che G, Liu C, Wang L, Yan L (2023) Advancing n-p* electron transition of carbon nitride via distorted structure and nitrogen heterocycle for efficient photodegradation: performance, mechanism and toxicity insight. J Colloid Interf Sci 632:285–298

    CAS  Google Scholar 

  56. Alarawi A, Ramalingam V, He J (2019) Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater Today Energy 11:1–23

    CAS  Google Scholar 

  57. Zhang J, Qin J, Wang M, Bai Y, Zou H, Keum JK, Tao R, Xu He YuH, Haacke S, Hu B (2019) Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 12:3061–3071

    Google Scholar 

  58. Zhou P, Chen H, Chao Y, Zhang Q, Zhang W, Lv F, Gu L, Zhao Q, Wang N, Wang J, Guo S (2021) Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat Commun 12:4412

    CAS  Google Scholar 

  59. Li Y, Yang L, He H, Sun L, Wang H, Fang X, Zhao Y, Zheng D, Qi Y, Li Z, Deng W (2022) In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat Commun 13:1355

    CAS  Google Scholar 

  60. Wang C, Wang K, Feng Y, Li C, Zho X, Gan L, Feng Y, Zhou H, Zhang B, Qu X, Li H, Li J, Li A, Sun Y, Zhang S, Yang G, Guo Y, Yang S, Zhou T, Don F, Zheng K, Wang L, Huang J, Zhang Z, Han X (2021) Co and Pt dual-single-atoms with oxygen-coordinated Co–O–Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv Mater 33:2003327

    CAS  Google Scholar 

  61. Hiragond C, Powar N, Lee J, In S (2022) Single-atom catalysts (SACs) for photocatalytic CO2 reduction with H2O: activity, product selectivity, stability, and surface chemistry. Small 18:2201428

    CAS  Google Scholar 

  62. Si S, Shou H, Mao Y, Bao X, Zhai G, Song K, Wang Z, Wang P, Liu Y, Zheng Z, Dai Y, Song L, Huang B, Cheng H (2022) Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4. Angew Chem Int Ed 61:e202209446

    CAS  Google Scholar 

  63. Ji S, Qu Y, Wang T, Chen Y, Wang G, Li X, Dong J, Chen Q, Zhang W, Zhang Z, Liang S, Yu R, Wang Y, Wang D, Li Y (2020) Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed 59:10651–10657

    CAS  Google Scholar 

  64. **ao Y, Tao Y, Jiang Y, Wang J, Zhang W, Liu Y, Zhang J, Wu X, Liu Z (2023) Construction of core-shell CeO2 nanorods/SnIn4S8 nanosheets heterojunction with rapid spatial electronic migration for effective wastewater purification and H2O2 production. Sep Purif Technol 304:122385

    CAS  Google Scholar 

  65. Li S, Cai M, Liu Y, Wang C, Lv K, Chen X (2022) S-scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): intermediate eco-toxicity analysis and mechanistic insights. Chin J Catal 43:2652–2664

    CAS  Google Scholar 

  66. Li S, Cai M, Liu Y, Wang C, Yan R, Chen X (2023) Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv Powder Mater 2:100073

    Google Scholar 

  67. Shi J, Tai M, Hou J, Qiao Y, Liu C, Zhou T, Wang L, Hu B (2023) Intramolecular D-A structure and n-π* transition co-promoted photodegradation activity of carbon nitride: Performance, mechanism and toxicity insight. Chem Eng J 456:141029

    CAS  Google Scholar 

  68. Wang L, Lan H, Guan W, Han J, Liu Y, Wang Y, Mao Y, Wang Y (2023) One-step purification of target enzymes using interaction- and structure-based design of aptamer-affinity responsive polymers: Selective immobilization and enhanced stability. Sep Purif Technol 307:122758

    CAS  Google Scholar 

  69. Cai T, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q (2022) Single-atom site catalysts for environmental remediation: recent advances. J Hazard, Mater 440:129772

    CAS  Google Scholar 

  70. Zhang C, Qin D, Zhou Y, Qin F, Wang H, Wang W, Yang Y, Zeng G (2022) Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and defect evolution. Appl Catal B-Environ 303:120904

    CAS  Google Scholar 

  71. Rong P, Jiang Y, Wang Q, Gu M, Jiang X, Yu Q (2022) Photocatalytic degradation of methylene blue (MB) with Cu1–ZnO single atom catalysts on graphenecoated flexible substrates. J Mater Chem A 10:6231

    CAS  Google Scholar 

  72. Huang S, Hu B, Zhao S, Zhang S, Wang M, Jia Q, He L, Zhang Z, Du M (2022) Multiple catalytic sites of Fe-Nx and Fe–N–C single atoms embedded N-doped carbon heterostructures for high-efficiency removal of malachite green. Chem Eng J 430:132933

    CAS  Google Scholar 

  73. Wang R, Liu J, Wang B, Yang R, Zhu S, Song Y, Hua Y, Yan J, Cheng M, Xu H, Li H (2022) Noble-metal-free Co-N-graphene/PDI for significant enhancement of photocatalytic performance. J Alloy Compd 925:166370

    CAS  Google Scholar 

  74. Qin Z, Hu S, Han W, Li Z, Xu W, Zhang J, Li G (2022) Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res 15:2971–2976

    CAS  Google Scholar 

  75. Lv X, Wei W, Li F, Huang B, Dai Y (2019) Metal-free B@g-CN: visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett 19:6391–6399

    CAS  Google Scholar 

  76. Peng H, Yang T, Lin H, Xu Y, Wang Z, Zhang Q, Liu S, Geng H, Gu L, Wang C, Fan X, Chen W, Huang X (2022) Ru/In dual-single atoms modulated charge separation for significantly accelerated photocatalytic H2 evolution in pure water. Adv Energy Mater 12:2201688

    CAS  Google Scholar 

  77. Shi X, Huang Y, Bo Y, Duan D, Wang Z, Cao J, Zhu G, Ho W, Wang L, Huang T, **ong Y (2022) Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew Chem Int Ed 61:e202203063

    CAS  Google Scholar 

  78. Gao C, Chen S, Wang Y, Wang J, Zheng X, Zhu J, Song L, Zhang W, **ong Y (2018) Heterogeneous single-atom catalyst for visible-light- driven high-turnover CO2 reduction. Adv Mater 30:1704624

    Google Scholar 

  79. Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J (2016) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew Chem Int Ed 55:14310–14314

    CAS  Google Scholar 

  80. Yang Y, Zeng G, Huang D, Zhang C, He D, Zhou C, Wang W, **ong W, Song B, Yi H, Ye S, Ren X (2020) In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics. Small 29:2001634

    Google Scholar 

  81. Wang X, Pan H, Sun M, Zhang Y (2022) Au single atom-anchored WO3/TiO2 nanotubes for the photocatalytic degradation of volatile organic compounds. J Mater Chem A 10:6078–6085

    CAS  Google Scholar 

  82. Zhou Z, Shen Z, Song C, Li M, Li H, Zhan S (2021) Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Res 201:117314

    CAS  Google Scholar 

  83. Zhao G, Li W, Zhang H, Wang W, Ren Y (2022) Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation. Chem Eng J 430:132937

    CAS  Google Scholar 

  84. Wei W, Gong H, Sheng L, Zhu S, Feng L (2022) Loading Rh single atoms onto hollow cubic Cu2MoS4 nanoparticles for decreased electron/hole recombination and increased photocatalytic performance. J Alloy Compd 896:162832

    CAS  Google Scholar 

  85. Chen J, Chen L, Wang X, Rao Z, Sun J, Chen A, **e X (2022) Rare-earth single atoms decorated 2D-TiO2 nanosheets for the photodegradation of gaseous O-xylene. J Colloid Interf Sci 605:674–684

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52072153), the Natural Science Foundation Project of Jilin Province (20210203105SF), the Project of Human Resources and Social Security Department of Jilin Province (2021Z007), the Zhenjiang Key R&D Programmes (SH2021021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangbo Che or Chunmei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Yue, C., Li, S. et al. Recent advance of single atom-based photocatalysts for energy conversion and environmental purification. Carbon Lett. 33, 957–972 (2023). https://doi.org/10.1007/s42823-023-00486-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00486-3

Keywords

Navigation