Log in

Electrochemical field-effect bio-transistor based on a multi-scale electronic nanomesh of single-walled carbon nanotubes

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube (SWNT) has gained significant interest as a transducer in various electrochemical sensing devices due to their unique structure, compatibility with biomolecules, and excellent electronic properties. As-prepared SWNTs are usually a mixture of semiconducting and metallic ones. Despite of the higher content of semiconducting components in mixed SWNTs, metallic properties are predominantly expressed due to the bundling issue of the SWNT during the fabrication process, limiting the applicability to bio-transistor application. Here, we present a multi-scale semiconducting electronic film of SWNTs as a transducing platform for electrochemical field-effect-transistor (eFET) suitable for the sensitive detection of subtle biological modulation. A genetically engineered filamentous M13 phage showing strong binding affinity toward SWNTs on its body surface was used as a biological material, allowing us to fabricate a large-scale transparent semiconducting nanocomposite. As the relative ratio of SWNT to M13 phage decreases, the on–off ratio of SWNT electronic film increases by 1200%. To show broad applicability, the multi-scale SWNT nanomesh-based eFET is applied for monitoring a variety of biological reactions in association with enzymes, aptamers, and even cyanobacteria. The biomimetic electronic material system with the capability of transducing biological responses at a large scale over a broad dynamic range holds excellent promise for biosensors, biofuel cells, and environment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292. https://doi.org/10.1126/science.1062711

    Article  CAS  Google Scholar 

  2. Duan XJ, Gao RX, **e P, Cohen-Karni T, Qing Q, Choe HS, Tian BZ, Jiang XC, Lieber CM (2012) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7(3):174–179. https://doi.org/10.1038/nnano.2011.223

    Article  CAS  Google Scholar 

  3. Yu CC, Lee SW, Ong J, Moore D, Saraf RF (2013) Single electron transistor in aqueous media. Adv Mater 25(22):3079–3084. https://doi.org/10.1002/adma.201204162

    Article  CAS  Google Scholar 

  4. Balasubramanian K, Lee EJH, Weitz RT, Burghard M, Kern K (2008) Carbon nanotube transistors-chemical functionalization and device characterization. Phys Status Solidi A 205(3):633–646. https://doi.org/10.1002/pssa.200723410

    Article  CAS  Google Scholar 

  5. Li WS, Hou PX, Liu C, Sun DM, Yuan JT, Zhao SY, Yin LC, Cong HT, Cheng HM (2013) High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors, Acs. NANO 7(8):6831–6839. https://doi.org/10.1021/nn401998r

    Article  CAS  Google Scholar 

  6. Huang SCJ, Artyukhin AB, Misra N, Martinez JA, Stroeve PA, Grigoropoulos CP, Ju JWW, Noy A (2010) Carbon nanotube transistor controlled by a biological ion pump gate. Nano Lett 10(5):1812–1816. https://doi.org/10.1021/nl100499x

    Article  CAS  Google Scholar 

  7. Liu S, Guo XF (2012) Carbon nanomaterials field-effect-transistor-based biosensors. Npg Asia Mater 4:1–10. https://doi.org/10.1038/am.2012.42

    Article  CAS  Google Scholar 

  8. Krupke R, Hennrich F, von Lohneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301(5631):344–347. https://doi.org/10.1126/science.1086534

    Article  CAS  Google Scholar 

  9. Topinka MA, Rowell MW, Goldhaber-Gordon D, McGehee MD, Hecht DS, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9(5):1866–1871. https://doi.org/10.1021/nl803849e

    Article  CAS  Google Scholar 

  10. Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2(10):1137–1141. https://doi.org/10.1021/nl025642u

    Article  CAS  Google Scholar 

  11. Chattopadhyay D, Galeska L, Papadimitrakopoulos F (2003) A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J Am Chem Soc 125(11):3370–3375. https://doi.org/10.1021/ja028599l

    Article  CAS  Google Scholar 

  12. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342. https://doi.org/10.1038/nmat877

    Article  CAS  Google Scholar 

  13. Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian YF, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang XW, Gao ZX, Yu YP, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H (2005) Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc 127(29):10287–10290. https://doi.org/10.1021/ja051774o

    Article  CAS  Google Scholar 

  14. So HM, Won K, Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc 127(34):11906–11907. https://doi.org/10.1021/ja053094r

    Article  CAS  Google Scholar 

  15. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19(11):1439–1451. https://doi.org/10.1002/adma.200602043

    Article  CAS  Google Scholar 

  16. He QY, Sudibya HG, Yin ZY, Wu SX, Li H, Boey F, Huang W, Chen P, Zhang H (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4(6):3201–3208. https://doi.org/10.1021/nn100780v

    Article  CAS  Google Scholar 

  17. Lee YJ, Yi H, Kim WJ, Kang K, Yun DS, Strano MS, Ceder G, Belcher AM (2009) Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science 324(5930):1051–1055. https://doi.org/10.1126/science.1171541

    Article  CAS  Google Scholar 

  18. Dang XN, Yi HJ, Ham MH, Qi JF, Yun DS, Ladewski R, Strano MS, Hammond PT, Belcher AM (2011) Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nanotechnol 6(6):377–384. https://doi.org/10.1038/nnano.2011.50

    Article  CAS  Google Scholar 

  19. Oh DY, Dang XN, Yi HJ, Allen MA, Xu K, Lee YJ, Belcher AM (2012) Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials. Small 8(7):1006–1011. https://doi.org/10.1002/smll.201102036

    Article  CAS  Google Scholar 

  20. Nehra A, Singh KP (2015) Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens Bioelectron 74:731–743. https://doi.org/10.1016/j.bios.2015.07.030

    Article  CAS  Google Scholar 

  21. Lee KY, Byeon HH, Jang C, Choi JH, Choi IS, Jung Y, Kim W, Chang J, Yi H (2015) Hydrodynamic assembly of conductive nanomesh of single-walled carbon nanotubes using biological glue. Adv Mater 27(5):922–928. https://doi.org/10.1002/adma.201404483

    Article  CAS  Google Scholar 

  22. Lee SW, Lee KY, Song YW, Choi WK, Chang J, Yi H (2015) Direct electron transfer of enzymes in a biologically assembled conductive nanomesh enzyme platform. Adv Mater 28(8):1577–1584. https://doi.org/10.1002/adma.201503930

    Article  CAS  Google Scholar 

  23. Nishizawa M, Matsue T, Uchida I (1992) Penicillin sensor based on a microarray electrode coated with pH-responsive polypyrrole. Analytical Chemsitry 64(21):2642–2644. https://doi.org/10.1021/ac00045a030

    Article  CAS  Google Scholar 

  24. Kuang H, Yin HH, Liu LQ, Xu LG, Ma W, Xu CL (2014) Asymmetric plasmonic aptasensor for sensitive detection of bisphenol A. Acs Appl Mater Inter 6(1):364–369. https://doi.org/10.1021/am4043678

    Article  CAS  Google Scholar 

  25. Zhu YY, Cai YL, Xu LG, Zheng LX, Wang LM, Qi B, Xu CL (2015) Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. Acs Appl Mater Inter 7(14):7492–7496. https://doi.org/10.1021/acsami.5b00199

    Article  CAS  Google Scholar 

  26. Lee EH, Lee SW, Saraf RF (2014) Noninvasive measurement of membrane potential modulation in microorganisms: photosynthesis in green algae. ACS Nano 8(1):780–786. https://doi.org/10.1021/nn405437z

    Article  CAS  Google Scholar 

  27. Pennisi CP, Greenbaum E, Yoshida K (2010) Analysis of light-induced transmembrane ion gradients and membrane potential in photosystem I proteoliposomes. Biophys Chem 146(1):13–24. https://doi.org/10.1016/j.bpc.2009.09.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Seoul National University of Science and Technology (SEOULTECH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Woo Lee or Eun-Hee Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SW., Cheon, KS., Lee, H. et al. Electrochemical field-effect bio-transistor based on a multi-scale electronic nanomesh of single-walled carbon nanotubes. Carbon Lett. 33, 1197–1204 (2023). https://doi.org/10.1007/s42823-023-00485-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00485-4

Keywords

Navigation