Log in

Endophytic bacterial diversity in the latex-bearing caulosphere of Hevea brasiliensis Müll. Arg

  • Environmental Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Rubber trees are a commercial cash crop, and the milky latex or polyisoprene they produce is the natural source of rubber. Little is known about the bacterial populations found in active zone of latex-bearing caulosphere. We employed a tailored cloud microbial bioinformatic approach for the identification and potential hypothetical ecological roles of an uncultured endophytic hidden bacterial community in the active zone of the latex-bearing caulosphere of Hevea brasiliensis. Small pieces of slivers were collected from healthy plant from the village: Belonia, South Tripura, rubber plantation in Northeastern India. These uncultured bacteria were identified using the V3–V4 hypervariable amplicon region of the 16 S rDNA gene. A total of 209,586 contigs have been generated. EasyMAP Version 1.0, a cloud-based microbial bioinformatics tool with an integrated QIIME2 pipeline, was used to analyze contigs. We detected 15 phyla and 91 OTUs (operational taxonomic units). Proteobacteria (73.5%) was the most enriched phylum, followed by Firmicutes (13.8%), Bacteroidetes (5.2%), and Actinobacteria (3.2%). Ammonia oxidizers, sulfate reducers, dehalogenation, chitin degradation, nitrite reducers, and aromatic hydrocarbon degraders were the most prevalent functional categories in the active zones of caulosphere. Furthermore, Gammaproteobacteria (49.2%) and Erwinia (29.19%) were the most abundant classes and genera of endophytic bacterial communities. Thus, the presence of a substantial amount of phosphate-solubilizing Gammaproteobacteria (PSB) may stimulate growth, increase plant resilience, suppress disease, and aid in the rubber and sugar breakdown. This is the first report of microbial endophytes associated with Hevea caulosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The total size of the amplicon metagenomic sequence reads is 79.4 Mb, including 209, 586 fastq paired-end reads and 126 M bases. The amplicon reads were available in the NCBI-Sequence Read Archive with accession number: SRX20114400 and BioProject ID: PRJNA962253.

References

  1. Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21:115–127. https://doi.org/10.1007/BF02897859

    Article  Google Scholar 

  2. Gunawardana M, Hyde ER, Lahmeyer S, Dorsey BL, La Val TP, Mullen M, Baum MM (2015) Euphorbia plant latex is inhabited by diverse microbial communities. Am J Bot 102(12):1966–1977. https://doi.org/10.3732/ajb.1500223

    Article  CAS  PubMed  Google Scholar 

  3. Salvucci ME, Barta C, Byers JA, Canarini A (2010) Photosynthesis and assimilate partitioning between carbohydrates and isoprenoid products in vegetatively active and dormant guayule: physiological and environmental constraints on rubber accumulation in a semiarid shrub. Physiol Plant 140(4):368–379

    Article  CAS  PubMed  Google Scholar 

  4. Carron MP, Enjalric F, Lardet L, Deschamps A (1989) Rubber (Hevea brasiliensis Müll. Arg). In: Bajaj YPS (ed) Trees II. Biotechnology in Agriculture and Forestry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61535-1_12

    Chapter  Google Scholar 

  5. Hashim I South American Leaf Blight (Microcyclus ulei) of Hevea rubber. In Protection against South American Leaf Blight of Rubber in Asia and the Pacific Region; FAO: Bangkok, Thailand, 2012; Volume II, pp. 21–133. ISBN 978-92-5-107228-8

  6. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfiled, Science Publisers, Montpellier., pp 277–306

    Google Scholar 

  7. Böttner L, Malacrinò A, Schulze Gronover C, van Deenen N, Müller B, Xu S, Huber M (2022) Natural rubber reduces herbivory and alters the microbiome below ground. New Phytol 239(4):1475–1489. https://doi.org/10.1111/nph.18709

    Article  CAS  Google Scholar 

  8. Salomez M, Subileau M, Intapun J, Bonfils F, Sainte-Beuve J, Vaysse L, Dubreucq E (2014) Micro‐organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition structure and properties. J Appl Microbiol 117(4):921–929. https://doi.org/10.1111/jam.12556

    Article  CAS  PubMed  Google Scholar 

  9. Lafont A (1909) Sur La presence d’un parasite de la classe des fl agelles dans le latex de l’E uphorbia pilulifera C omptes Rendus Des Séances De La Société De Biologie. et de ses Filiales 66:1011–1013

    Google Scholar 

  10. Picado C (1921) The bacteria of latex Comptes Rendus Des Seances De La Société De Biologie. et de ses Filiales 84:552

    CAS  Google Scholar 

  11. Taysum DH (1957) A review of the comparative bacteriology of Hevea brasiliensis latex and its commercial derivatives. Appl Microbiol 5(6):349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Intapun J (2009) Study of the effects of biological maturation of coagula of Hevea brasiliensis latex on dry rubber properties. Doctoral dissertation, Montpellier SupAgro France and Prince of Songkla University Surat Thani Thailand

  13. Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3(3):240–254. https://doi.org/10.1016/j.funeco.2009.12.001

    Article  Google Scholar 

  14. Mitchell A (2008) Muscodor crispans a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fung Divers 31:37–43

    Google Scholar 

  15. Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma Martiale Sp nov. a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112(11):1335–1343. https://doi.org/10.1016/j.mycres.2008.06.022

    Article  CAS  PubMed  Google Scholar 

  16. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1–e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  17. Hung YM, Lu TP, Tsai MH, Lai LC, Chuang EY (2021) EasyMAP: a user-friendly online platform for analyzing 16S ribosomal DNA sequencing data. N Biotechnol 63:37–44. https://doi.org/10.1016/j.nbt.2021.03.001

    Article  CAS  PubMed  Google Scholar 

  18. Arndt D, **a J, Liu Y, Zhou Y, Guo AC, Cruz JA, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40(W1):W88–W95. https://doi.org/10.1093/nar/gks497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, Tatem B, Frank DN (2013) Explicet: graphical user interface software for metadata-driven management analysis and visualization of microbiome data. Bioinformatics 29(23):3100–3101. https://doi.org/10.1093/bioinformatics/btt526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Birke J, Röther W, Jendrossek D (2015) Latex clearing protein (lcp) of Streptomyces sp strain K30 is ab-type cytochrome and differs from rubber oxygenase A (RoxA) in its biophysical properties. Appl Environ Microbiol 81(11):3793–3799. https://doi.org/10.1128/AEM.00275-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Steinbüchel A (2000) Biodegradation of cis-1 4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Appl Environ Microbiol 66(4):1639–1645. https://doi.org/10.1128/AEM.66.4.1639-1645.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watcharakul S, Röther W, Birke J, Umsakul K, Hodgson B, Jendrossek D (2016) Biochemical and spectroscopic characterization of purified latex Clearing protein (lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiol 16:1–13. https://doi.org/10.1186/s12866-016-0703-x

    Article  CAS  Google Scholar 

  23. Hapuarachchi SNS, Kariyapper SR, Gunawardana MBDMD, Egodage S, Ariyadasa TU (2016) Biodegradation of natural rubber latex by a novel bacterial species isolated from soil. In Moratuwa engineering research conference (MERCon) (pp 293–296) IEEE

  24. Starr MP, Chatterjee AK (1972) The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol 26(1):389–426. https://doi.org/10.1146/annurev.mi.26.100172.002133

    Article  CAS  PubMed  Google Scholar 

  25. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Evol Microbiol 44(4):812–826. https://doi.org/10.1099/00207713-44-4-812

    Article  CAS  Google Scholar 

  26. Effendi Y, Aini N, Pambudi A, Sasaerila HY (2020) Metagenomics analysis of soil microbial communities in plant agroforestry system rubber tree (Hevea brasiliensis)–Ganyong (Canna Sp. IOP Conf Ser: Earth Environ Sci 468(1). https://doi.org/10.1088/1755-1315/468/1/012045

  27. Effendi Y, Pambudi A, Sasaerila Y, WijiHastuti RS (2019) Metagenomic analysis of diversity and composition of soil bacteria under intercrop** system Hevea brasiliensis and Canna indica IOP Conf. Ser.: Earth Environ. Sci. 391(1). https://doi.org/10.1088/1755-1315/391/1/012023

  28. Martin RR, Gazis D, Skaltsas P, Chaverri, Hibbett D (2015) Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea brasiliensis. Mycologia 107:284–297. https://doi.org/10.3852/14-206

    Article  PubMed  Google Scholar 

  29. Fonseca PLC, Skaltsas D, da Silva FF, Kato RB, de Castro GM, García GJY, Góes-Neto A (2022) An integrative view of the Phyllosphere Mycobiome of native rubber trees in the Brazilian Amazon. J Fungus 8(4):373. https://doi.org/10.3390/jof8040373

    Article  CAS  Google Scholar 

  30. Kanokwiroon K, Teanpaisan R, Wititsuwannakul D, Hooper AB, Wititsuwannakul R (2008) Antimicrobial activity of a protein purified from the latex of Hevea brasiliensis on oral microorganisms. Mycoses 51(4):301–307. https://doi.org/10.1111/j.1439-0507.2008.01490.x

    Article  CAS  PubMed  Google Scholar 

  31. Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Qin Y (2010) The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell Environ 33(10):1708–1720. https://doi.org/10.1111/j.1365-3040.2010.02175.x

    Article  CAS  PubMed  Google Scholar 

  32. Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77(10):3219–3226. https://doi.org/10.1128/AEM.02810-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data 6:159–163. https://doi.org/10.1016/j.gdata.2015.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  34. DeLong EF, Lory S, Stackebrandt E, Thompson F (2014) The Prokaryotes: Gammaproteobacteria, In: Rosenberg E (ed) 4th edn. Springer Berlin Heidelberg 225–286. https://doi.org/10.1007/978-3-642-38922-1

  35. Hauben L, Moore ER, Vauterin L, Steenackers M, Mergaert J, Verdonck L, Swings J (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21(3):384–397. https://doi.org/10.1016/S0723-2020(98)80048-9

    Article  CAS  PubMed  Google Scholar 

  36. Costa OY, De Hollander M, Pijl A, Liu B, Kuramae EE (2020) Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer. Microbiome 8(1):1–19. https://doi.org/10.1186/s40168-020-00836-7

    Article  CAS  Google Scholar 

  37. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914. https://doi.org/10.1139/m97-131

    Article  CAS  Google Scholar 

  38. Raven JA, Yin ZH (1998) The past, present and future of nitrogenous compounds in the atmosphere, and their interactions with plants. New Phytol 139(1):205–219. https://doi.org/10.1046/j.1469-8137.1998.00168.x

    Article  CAS  Google Scholar 

  39. Vishal V, Munda SS, Singh G, Lal S (2021) Cataloguing the bacterial diversity in the active ectomycorrhizal zone of Astraeus from a dry deciduous forest of Shorea. Biodivers Data J 9:e63086. https://doi.org/10.3897/BDJ.9.e63086

    Article  PubMed  PubMed Central  Google Scholar 

  40. González-Cabaleiro R, Curtis TP, Ofiţeru ID (2019) Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield. Water Res 154:238–245. https://doi.org/10.1016/j.watres.2019.01.054

    Article  CAS  PubMed  Google Scholar 

  41. do Rego Barros FM, Fracetto FJC, Junior MAL, Bertini SCB, Fracetto GGM (2021) Spatial and seasonal responses of diazotrophs and ammonium-oxidizing bacteria to legume-based silvopastoral systems. Appl Soil Ecol 158:103797. https://doi.org/10.1016/j.apsoil.2020.103797

    Article  Google Scholar 

  42. Bowatte S, Newton PC, Brock S, Theobald P, Luo D (2015) Bacteria on leaves: a previously unrecognised source of N2O in grazed pastures. ISME J 9(1):265–267. https://doi.org/10.1038/ismej.2014.118

    Article  CAS  PubMed  Google Scholar 

  43. Bowatte S, Asakawa S, Okada M, Kobayashi K, Kimura M (2007) Effect of elevated atmospheric CO2 concentration on ammonia oxidizing bacteria communities inhabiting in rice roots. Soil Sci Plant Nutr 53(1):32–39. https://doi.org/10.1111/j.1747-0765.2007.00104.x

    Article  CAS  Google Scholar 

  44. Liang D, Bowatte S (2022) Seed endophytic ammonia oxidizing bacteria in Elymus nutans transmit to offspring plants and contribute to nitrification in the root zone. Front Microbiol 13:1036897. https://doi.org/10.3389/fmicb.2022.1036897

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koops HP, Pommerening-Röser A (2005) The lithoautotrophic Ammonia-oxidizing Bacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual® of systematic bacteriology. Springer, Boston, MA. https://doi.org/10.1007/0-387-28021-9_18

    Chapter  Google Scholar 

  46. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67(6):2469–2475. https://doi.org/10.1128/AEM.67.6.2469-2475.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

    Article  CAS  PubMed  Google Scholar 

  48. **e M, Gao X, Zhang S, Fu X, Le Y, Wang L (2023) Cadmium stimulated cooperation between bacterial endophytes and plant intrinsic detoxification mechanism in Lonicera japonica thumb. Chemosphere 325:138411. https://doi.org/10.1016/j.chemosphere.2023.138411

    Article  CAS  PubMed  Google Scholar 

  49. Li Q, **ang P, Li L, Zhang T, Wu Q, Bao Z, Zhao C (2023) Phosphorus mining activities alter endophytic bacterial communities and metabolic functions of surrounding vegetables and crops. Plant Soil 1–20. https://doi.org/10.1007/s11104-023-05961-4

Download references

Acknowledgements

The authors express their gratitude to the Principal of Bangabasi Evening college, Principal of Narasinha Dutta College, Howrah, West Bengal and Head of Department of Botany, DSPMU, Ranchi, Jharkhand for provide all the necessary facilities and laboratory usage. Dr. Prasanta Dey, Postdoctoral Fellow, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, USA and Ratan Dey from Tripura deserve special gratitude for his assistance during the survey and sample collection.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The ideas and project were developed by VV, TD, SL and SR. VV, TD, and SR, were involved in the research and investigation process, particularly in experimentation. TD, VV, SL and SR have equally contributed in data interpretation, analysis and writing of the manuscript. All of the authors provided constructive feedback on how to implement the study, analysis, and develo** the article. The version to be submitted, as well as any revised versions, received final approval from SR.

Corresponding author

Correspondence to Sabdar Rahaman.

Ethics declarations

Research involves human or animals participation

This research work did not involve human participants and/ or animals.

Informed consent

All the authors take accountability for the authenticity of the work as a whole, from the beginning to the completion of the article. The research work submission is approved by all of the authors.

Conflict of interest

The authors have no conflict of interest.

Additional information

Responsible Editor: Luis Augusto Nero.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishal, V., Das, T., Lal, S. et al. Endophytic bacterial diversity in the latex-bearing caulosphere of Hevea brasiliensis Müll. Arg. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01373-3

Keywords

Navigation