Log in

Virulence factors and antimicrobial resistance of Escherichia coli isolated from commercialized fresh cheese in the south of Espírito Santo

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cheeses are dairy products that can potentially contain a diverse range of harmful bacteria that could be consumed by humans, including the enteric pathogen Escherichia coli. This study aimed to characterize the presence of total coliforms, assess the antimicrobial susceptibility profiles of the main commercial antimicrobial classes and biocides, and evaluate the ability of 50 E. coli isolates obtained from fresh cheese sold in the southern region of Espírito Santo, Brazil, to produce biofilms. The counts of total coliforms + E. coli obtained averages of (A) 7.22 × 106 CFU/g, (B) 9.35 × 107 CFU/g, and (C) 1.16 × 106 CFU/g for different brands. All isolates were capable of forming biofilms, with 8%, 76%, and 16% of these isolates presenting high, moderate, and low adherence in biofilm formation, respectively. Most strains showed inhibition halos for the biocides chlorhexidine digluconate 2% (16 mm ± 4.34), iodopovidone 10% (7.14 mm ± 0.36), and sodium hypochlorite 2% (7.12 mm ± 0.33). Out of the 50 strains, 21 (42%) were resistant to at least one of the antimicrobials. Regarding the multiple resistance index, 3 (6%) strains were resistant to 3 or more antimicrobial classes. Furthermore, 2 (4%) were extended-spectrum beta-lactamases producers. Resistance to ampicillin and amoxicillin was observed in 20% and 40% of the strains, respectively. In contrast, gentamicin was the most effective antimicrobial, with a sensitivity rate of 100%. The findings indicate that E. coli present in fresh cheese may possess unique physiological characteristics that could be associated with their persistence, virulence, and multidrug resistance. These results raise significant public health concerns since contaminated food can pose risks to consumers’ health, emphasizing the importance of reinforcing hygienic-sanitary controls at all stages of production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Campos AC, Puno-Sarmiento JJ, Medeiros LP, Gazal LE, Maluta RP, Navarro A, Kobayashi RKT, Forgan EP, Nakazato G (2018) Virulence genes and antimicrobial resistance in Escherichia coli from cheese made from unpasteurized milk in Brazil. Foodborne pathog dis 15:94–100. https://doi.org/10.1089/fpd.2017.2345

    Article  CAS  PubMed  Google Scholar 

  2. Galan V, Pereira JC (2017). As Boas Oportunidades do Minas Frescal. Publishing Milkpoint. https://www.milkpoint.com.br/noticias-e-mercado/panorama-mercado/as-boas-oportunidades-no-minas-frescal-106812n.aspx?r=327964248. Acessed 18 mar. 2023.

  3. IBGE (2022) Instituto Brasileiro de Geografia e Estatística. Pesquisa da pecuária municipal. Rio de Janeiro: Sistema IBGE de Recuperação Automática – SIDRA. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=resultados>. Acessed 20 mar. 2023.

  4. INCAPER (2019) Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural. Pecuária. Vitória: instituto capixaba de pesquisa, assistência técnica e extensão rural – Incaper. https://incaper.es.gov.br/pecuaria#:~:text=O%20Esp%C3%ADrito%20Santo%20tem%20uma,48%2C91%25%20do%20total Acessed 20 mar. 2023.

  5. BRASIL (2017) Decreto n° 9.013, de 29 de março de 2017. Regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre a inspeção industrial e sanitária de produtos de origem animal. Diário Oficial da União, Brasília, Distrito Federal. Seção 1:3

  6. BRASIL (1997) Portaria nº 352, de 4 de setembro de 1997. Aprova o regulamento técnico para fixação de identidade e qualidade de queijo Minas Frescal. Diário Oficial da União, Brasília, Distrito Federal

  7. Hoffman FL, Silva JV, Vinturim TM (2002) Qualidade microbiológica de queijos tipo “Minas Frescal” vendidos em feiras livres na região de São Jose, SP. Hig Aliment 16:69–76

    Google Scholar 

  8. Ferreira MA, Bernado LG, Neves LS, Campos MRH, Lamaro-Cardoso J, Andre MCP (2016) Virulence profile and genetic variability of Staphylococcus aureus isolated from artisanal cheese. J Dairy Sci 99:1–9. https://doi.org/10.3168/jds.2015-10732

    Article  CAS  Google Scholar 

  9. Ribeiro Júnior JC (2019) Molecular characterization and antimicrobial resistance of pathogenic Escherichia coli isolated from raw milk and Minas Frescal cheeses in Brazil. J Dairy Sci 102:10850–10854. https://doi.org/10.3168/jds.2019-16732

    Article  CAS  PubMed  Google Scholar 

  10. Caniça M, Manageiro V, Abriouel H, Moran-Gilad J, Franz CM (2019) Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol 84:41–44. https://doi.org/10.1016/j.tifs.2018.08.001

    Article  CAS  Google Scholar 

  11. Oliveira JWS, Abrantes SDMP, Marin VA, Silva CR, Pires BAD (2019) Resistência antimicrobiana em cepas de Escherichia coli isoladas de queijo Minas Frescal no município do Rio de Janeiro – Perfil fenotípico e genotípico. Vigil Sanit Debate 7:86–91. https://doi.org/10.22239/2317-269X.01296

    Article  Google Scholar 

  12. Dias MT, Bricio SML, Almeida DO, Oliveira LAT, de Filippis I, Marin VA (2012) Molecular characterization and evaluation of antimicrobial susceptibility of enteropathogenic E. coli (EPEC) isolated from minas soft cheese. Trends Food Sci Technol 32:747–753. https://doi.org/10.1590/S0101-20612012005000059

    Article  Google Scholar 

  13. BRASIL (2019) Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Diretoria Colegiada. Instrução normativa n.° 60, 23 de Dezembro de 2019. Dispõe sobre os padrões microbiológicos de alimentos e sua aplicação. Diário Oficial República Federativa do Brasil, Brasília, Distrito Federal

  14. WHO (2019)- World Health Organization. https://www.who.int/es/newsroom/fact-sheets/detail/food-safety. Accessed 16 Sept 2022

  15. Campos MRH, André MCDPB, Borges LJ, Kipnis A, Pimenta FC, Serafini AB (2009) Genetic heterogeneity of Escherichia coli strains isolated from raw milk, minas frescal cheese, and food handlers. Arq Bras Med Vet 61:1203–1209. https://doi.org/10.1590/S0102-09352009000500025

    Article  Google Scholar 

  16. Oltramari K, Rios MC, Bergamasco R, Junior MM, Zanella GN, Madrona G, Mikcha JMG (2011) Resistência a antimicrobianos em Escherichia coli isolada de leite pasteurizado. Revis Tecn 1:57–61

    Google Scholar 

  17. Carvalho RN, Oliveira AND, Mesquita AJD, Rezende CSM, Mesquita AQD, Romero RAM (2014) PCR and ELISA (VIDAS ECO O157®) Escherichia coli O157: H7 identification in Minas Frescal cheese commercialized in Goiânia, GO. Braz J Microbiol 45:07–10. https://doi.org/10.1590/S1517-83822014000100002

    Article  Google Scholar 

  18. Okura MH, Marin JM (2014) Survey of Minas frescal cheese from Southwest Minas Gerais for virulence factors and antimicrobial resistance in Escherichia coli isolates. Ciênci Rural 44:1506–1511. https://doi.org/10.1590/0103-8478cr20131237

    Article  Google Scholar 

  19. Silva AA, Storti BC, Ferreira ML, Souza SMO (2019) Detecção de Escherichia coli pelo sistema petrifilmTM em queijo minas frescal embalados à vácuo. Pubvet 13:1–5. https://doi.org/10.31533/pubvet.v13n5a332.1-5

    Article  Google Scholar 

  20. WHO (2018) World Health Organization. E. coli. Geneva, 2018. <http://www.who.int/news-room/fact-sheets/detail/e-coli>. Acessed 16 Sept 2022.

  21. Guimarães RA, Lugo Neto DF, Saraiva MDMS, Lima RP, Barros MR, Costa MMD, Oliveira CB, Stipp DT (2015) Caracterização filogenética molecular e resistência antimicrobiana de Escherichia coli isoladas de caprinos neonatos com diarreia. Ciênc Anim Bras 4:615–622. https://doi.org/10.1590/1089-6891v16i433639

    Article  Google Scholar 

  22. Jiang X, Shi L (2013) Distribution of tetracycline and trimethoprim/sulfamethoxazole resistance genes in aerobic bacteria isolated from cooked meat products in Guangzhou. China Food Control 30(1):30–34. https://doi.org/10.1016/j.foodcont.2012.06.042

    Article  CAS  Google Scholar 

  23. Cardoso P, Marin JM (2014) Resistência antimicrobiana de isolados de Escherichia coli provenientes de queijo muçarela artesanal produzido no Brasil. Ars Vet 30(2):104–108. https://doi.org/10.15361/2175-0106.2014v30n2p104-108

    Article  CAS  Google Scholar 

  24. Ribeiro LF, Barbosa MMC, Pinto FDR, Maluta RP, Oliveira MC, Souza V, Fairbrother JM (2016) Antimicrobial resistance and virulence factors of Escherichia coli in cheese made from unpasteurized milk in three cities in Brazil. Foodborne Pathog Dis 13(9):469–476. https://doi.org/10.1089/fpd.2015.2106

    Article  CAS  PubMed  Google Scholar 

  25. Scenihr (2009) Risk assessment of products of nanotechnologies. European Commission, Scientific committee on emerging and newly identified health risks. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf. Accessed 25 Sept 2022

  26. Ghanem B, Haddadin RN (2018) Multiple drug resistance and biocide resistance in Escherichia coli environmental isolates from hospital and household settings. Antimicrob Resist Infect Control 7(1):1–7. https://doi.org/10.1186/s13756-018-0339-8

    Article  Google Scholar 

  27. BRASIL (2013). Ministério da Saúde. Agencia Nacional de Vigilância Sanitária. Manual de Microbiologia Clínica para o Controle de Infecção Relacionada à Assistência à Saúde. Módulo 6: Detecção e identificação de bactérias de importância medica. Brasília. Accessed 25 Jan 2023. https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/servicosdesaude/publicacoes/modulo-10_manual-de-microbiologia.pdf

  28. Dias VC, Resende JA, Bastos AN, Bastos LQA, Bastos VQA, Bastos RV, Diniz CG, Silva VL (2017) Epidemiological, physiological, and molecular characteristics of a Brazilian collection of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microbial Drug Resist 23(7):852–863. https://doi.org/10.1089/mdr.2016.0219

    Article  CAS  Google Scholar 

  29. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179. https://doi.org/10.1016/S0167-7012(00)00122-6

    Article  PubMed  Google Scholar 

  30. CLSI. Clinical and Laboratory Standard Institute (2019). Performance standards for antimicrobial susceptibility testing: nineteenth informational. supplement M100-S19. Wayne, PA, USA. 2019

  31. CLSI. Clinical and Laboratory Standard Institute (2009). Performance standards for antimicrobial susceptibility testing: nineteenth informational. supplement M100-S19. Wayne, PA, USA. 2009

  32. Bland JM, Altman DG (2000) The odds ratio Bmj 320:7247–1468. https://doi.org/10.1136/bmj.320.7247.1468

    Article  Google Scholar 

  33. Kamimura BA, Magnani M, Luciano WA, Campagnollo FB, Pimentel TC, Alvarenga VO, Pelegrino BO, Cruz AG, Sant’Ana AS (2019) Brazilian artisanal cheeses: an overview of their characteristics, main types and regulatory aspects. Compr Rev Food Sci Food Saf 18(5):1636–1657. https://doi.org/10.1111/1541-4337.12486

    Article  PubMed  Google Scholar 

  34. Morais CC, Rezende AJ (2013) Microbiological analysis of Minas frescal cheese sold in supermarkets of Brasilia, DF. REVISA 1:11–18

    Google Scholar 

  35. Silva RAP, Belo RFC (2018) Avaliação da qualidade microbiológica de queijos do tipo minas frescal produzidos artesanalmente e comercializados no município de Sete Lagoas. Minas Gerais. RBCV 6(3):1–21. https://doi.org/10.18241/0073-98552014731628

    Article  CAS  Google Scholar 

  36. Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, Dingqiang C, Xu Z (2017) Formation and development of Staphylococcus biofilm: with focus on food safety. J Food Saf 37(4):1–11. https://doi.org/10.1111/jfs.12358

    Article  Google Scholar 

  37. Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. https://doi.org/10.1038/nrmicro241510.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  38. Coelho SMO, Pereira IA, Soares LC, Pribul BR, Souza MMS (2011) Short communication: profile of virulence factors of Staphylococcus aureus isolated from subclinical bovine mastites in the state of Rio de Janeiro, Brazil. J Dairy Sci 94:3305–3310. https://doi.org/10.3168/jds.2010-3229

    Article  CAS  PubMed  Google Scholar 

  39. Parussolo L, Sfaciotte RAP, Dalmina KA, Melo FD, Costa UM, Ferraz SM (2019) Detection of virulence genes and antimicrobial resistance profiles of Escherichia coli isolates from raw milk and artisanal cheese in Southern Brazil. Semin Cienc Agrar 40(1):163–178. https://doi.org/10.5433/1679-0359.2019v40n1p163

    Article  CAS  Google Scholar 

  40. Madani A, Esfandiari Z, Shoaei P, Ataei B (2022) Evaluation of virulence factors, antibiotic resistance, and biofilm formation of Escherichia coli isolated from milk and dairy products in Isfahan. Iran Foods 11(7):960–975. https://doi.org/10.3390/foods11070960

    Article  CAS  PubMed  Google Scholar 

  41. Bae YM, Baek SY, Lee SY (2012) Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int J Food Microbiol 153:465–473. https://doi.org/10.1016/j.ijfoodmicro.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  42. Cherif-Antar A, Moussa-Boudjemâa B, Didouh N, Medjahdi K, Mayo B, Flórez AB (2016) Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant. Dairy Sci Technol 96:27–38. https://doi.org/10.1007/s13594-015-0235-4

    Article  CAS  Google Scholar 

  43. Humayoun SB, Hiott LM, Gupta SK, Barrett JB, Woodley TA, Johnston JJ, Jackson CR, Frye JG (2018) An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS ONE 13(12):1–24. https://doi.org/10.1371/journal.pone.0209072

    Article  CAS  Google Scholar 

  44. Mc Carlie S, Boucher CE, Bragg RR (2020) Molecular basis of bacterial disinfectant resistance. Drug Resist Updat 100672:1–9. https://doi.org/10.1016/j.drup.2019.100672

    Article  Google Scholar 

  45. Ruegg PL (2017) A 100-year review: mastitis detection, management, and prevention. J Dairy Sci 100:10381–10397. https://doi.org/10.3168/jds.2017-13023

    Article  CAS  PubMed  Google Scholar 

  46. Ózsvári L, Ivanyos D (2022) The use of teat disinfectants and milking machine cleaning products in commercial Holstein-Friesian farms. Front Vet Sci 9:1–15. https://doi.org/10.3389/fvets.2022.956843

    Article  Google Scholar 

  47. Martins CMMR, Pinheiro ESC, Gentilini M, Benavides ML, Santos MV (2017) Efficacy of a high free iodine barrier teat disinfectant for the prevention of naturally occurring new intramammary infections and clinical mastitis in dairy cows. J Dairy Sci 100:3930–3939. https://doi.org/10.3168/jds.2016-11193

    Article  CAS  PubMed  Google Scholar 

  48. Jones IA, Joshi LT (2021) Biocide use in the antimicrobial era: a review. Molecules 26:1–11. https://doi.org/10.3390/molecules26082276

    Article  CAS  Google Scholar 

  49. Evangelista-Barreto NS, Santos GCF, Souza JS, Bernardes FS, Silva IP (2016) Queijos artesanais como veiculo de contaminação de Escherichia coli e estafilococos coagulase positiva resistentes a antimicrobianos. RBHSA 10(1):55–67. https://doi.org/10.5935/1981-2965.20160006

    Article  CAS  Google Scholar 

  50. Imre K, Ban-Cucerzan A, Herman V, Sallam KI, Cristina RT, Abd-Elghany SM, Morar D, Popa AS, Imre M, Morar A (2022) Occurrence, pathogenic potential and antimicrobial resistance of Escherichia coli isolated from raw milk cheese commercialized in Banat Region. Romania J Antibiotic 11(6):721–731. https://doi.org/10.3390/antibiotics11060721

    Article  CAS  Google Scholar 

  51. Campos MRH, Kipnis A, André MCDPB, Vieira CAS, Jayme LB, Santos PP, Serafini ÁB (2006) Caracterização fenotípica pelo antibiograma de cepas de Escherichia coli isoladas de manipuladores, de leite cru e de queijo. Ciênci Rural 6(4):1221–1227. https://doi.org/10.1590/S0103-84782006000400027

    Article  Google Scholar 

  52. Neres LLFG, Neres JCI, Carvalho AV, Cerqueira FB, Santana DL, Pereira TA, Kozusny-Andreani DI (2019) Perfil de sensibilidade microbiana in vitro de cepas de Escherichia coli e Klebsiella pneumoniae isoladas de queijo artesanal. Rev Ibero-Am Ciênc Ambient 10(3):20–29. https://doi.org/10.6008/CBPC2179-6858.2019.003.0003

    Article  Google Scholar 

  53. Husan O, Çadirci Ö (2019) Determination of extended spectrum β-lactamase producing Enterobacteriaceae from cheese samples sold in public bazaars. J Food Saf 39(5):12680. https://doi.org/10.1111/jfs.12680

    Article  CAS  Google Scholar 

  54. Loeza-Lara PD, Medina-Estrada RI, Bravo-Monzón ÁE, Jiménez-Mejía R (2023) Frequency and characteristics of ESBL-producing Escherichia coli isolated from Mexican fresh cheese. Food Sci Technol 43:e108222. https://doi.org/10.1590/fst.108222

    Article  Google Scholar 

  55. Silva CR, Okuno NT, Macedo VHLM, Freire IR, Miller RM, Marin VA (2020) Resistome in Gram-negative bacteria from soft cheese in Brazil. Ciênc Méd Biol 19(3):430–440. https://doi.org/10.9771/cmbio.v19i3.35460

    Article  Google Scholar 

  56. Khan SJ, Osborn AM, Eswara PJ (2021) Effect of sunlight on the efficacy of commercial antibiotics used in agriculture. Front Microbiol 12:1–7. https://doi.org/10.3389/fmicb.2021.645175

    Article  Google Scholar 

  57. Donaghy JA, Jagadeesan B, Goodburn K, Grunwald L, Jensen ON, Jespers AD, Quentin MC (2019) Relationship of sanitizers, disinfectants, and cleaning agents with antimicrobial resistance. J Food Prot 82(5):889–902. https://doi.org/10.4315/0362-028X.JFP-18-373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Universidade Federal do Espírito Santo (UFES), Fundação de Amparo à Pesquisa e Inovação do Espírito Santo; Conselho Nacional de Desenvolvimento Científico e Tecnológico; and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (financing modality 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Alves Resende.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Beatriz Ernestina Cabilio Guth

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, K.V., Pimentel, B.M.F., Da Costa, J.A.C. et al. Virulence factors and antimicrobial resistance of Escherichia coli isolated from commercialized fresh cheese in the south of Espírito Santo. Braz J Microbiol 54, 2063–2071 (2023). https://doi.org/10.1007/s42770-023-01013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01013-2

Keywords

Navigation