Log in

Tumor-Anchoring Drug-Loaded Fibrous Microspheres for MR Imaging-Guided Local Chemotherapy and Metastasis Inhibition

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Unobtrusive metastasis and invasion of malignant tumors are major causes for the death of cancer patients, and unfortunately the lack of specificity and abrupt release of anticancer drugs applied to the primary tumors are causing serious side effects in cancer management. Hence, the development of controlled local drug delivery systems that can effectively treat primary tumors and inhibit tumor metastasis is of critical importance for improved cancer therapeutics. Herein, we developed hyaluronic acid (HA)-modified porous fibrous microspheres as a drug delivery system with the functions of long-acting local chemotherapy, tumor metastasis inhibition and magnetic resonance (MR) imaging. Poly (lactic-co-glycolic acid) (PLGA) short fibers obtained by combined electrospinning and homogenization techniques were successfully modified with gadolinium (Gd3+) chelates and HA, which were subsequently mixed with doxorubicin (DOX) to obtain the multifunctional drug-loaded fibrous microspheres of DOX-PLGA-PEI-DTPA-Gd/HA (DOX − PGH) by electrospray and further crosslinking. The developed DOX − PGH microspheres with an average diameter of 118.8 μm possess good structural stability and a high r1 relaxivity, and can achieve long-term DOX release. The cellular and animal experiments demonstrated that the DOX − PGH microspheres could facilitate targeted delivery of DOX to accelerate 4T1 cell death while reducing cancer cell metastasis due to the cooperative actions of long-term DOX-mediated chemotherapy and the fibrous microsphere-induced tumor anchoring to likely avoid primary tumor cell shedding, and render MR imaging of tumors during the treatment. The developed DOX − PGH microspheres may represent one of the updated local tumor chemotherapy formulations for improved tumor therapy with justified antitumor and anti-metastasis efficacy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee AW, Lin FX, Wei PL, Guo JW, Chen JK. Binary-blend fibber-based capture assay of circulating tumor cells for clinical diagnosis of colorectal cancer. J Nanobiotechnol 2018;16:4.

    Article  Google Scholar 

  2. Menyailo ME, Tretyakova MS, Denisov EV. Heterogeneity of circulating tumor cells in breast cancer: identifying metastatic seeds. Int J Mol Sci 2020;21:1696.

    Article  CAS  Google Scholar 

  3. Ganesh K, Massague J. Targeting metastatic cancer. Nat Med 2021;27:34.

    Article  CAS  Google Scholar 

  4. Zhang ZW, Wang H, Tan T, Li J, Wang ZW, Li YP. Rational design of nanoparticles with deep tumor penetration for effective treatment of tumor metastasis. Adv Funct Mater 2018;28:1801840.

    Article  Google Scholar 

  5. Luo DD, Carter KA, Miranda D, Lovell JF. Chemophototherapy: an emerging treatment option for solid tumors. Adv Sci 2017;4:1600106.

    Article  Google Scholar 

  6. Lin H, Chen Y, Shi JL. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev 1938;2018:47.

    Google Scholar 

  7. **ong BY, Chen YX, Liu Y, Hu XL, Han HB, Li QS. Artesunate-loaded porous PLGA microsphere as a pulmonary delivery system for the treatment of non-small cell lung cancer. Colloids Surf B. 2021;206:111937.

    Article  CAS  Google Scholar 

  8. Li WX, Chen S, Zhang LF, Zhang Y, Yang XH, **e BB, Guo J, He Y, Wang CH. Inhalable functional mixed-polymer microspheres to enhance doxorubicin release behavior for lung cancer treatment. Colloids Surf B. 2020;196:111350.

    Article  CAS  Google Scholar 

  9. Xuan MJ, Shao JX, Zhao J, Li Q, Dai LR, Li JB. Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy. Angew Chem Int Ed 2018;57:6049.

    Article  CAS  Google Scholar 

  10. Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Controlled Release 2018;277:89.

    Article  CAS  Google Scholar 

  11. Sun CZ, Lu J, Wang J, Hao P, Li CH, Qi L, Yang L, He B, Zhong ZR, Hao N. Redox-sensitive polymeric micelles with aggregation-induced emission for bioimaging and delivery of anticancer drugs. J Nanobiotechnol 2021;19:14.

    Article  CAS  Google Scholar 

  12. Canbolat MF, Celebioglu A, Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf B. 2014;115:15.

    Article  CAS  Google Scholar 

  13. Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Controlled Release 2015;220:584.

    Article  CAS  Google Scholar 

  14. Huang W, **ao YC, Shi XY. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv Fiber Mater 2019;1:32.

    Article  Google Scholar 

  15. Wang MY, Tan YL, Li D, Xu GW, Yin D, **ao YC, Xu TG, Chen XF, Zhu XY, Shi XY. Negative isolation of circulating tumor cells using a microfluidic platform integrated with streptavidin-functionalized PLGA nanofibers. Adv Fiber Mater 2021;3:192.

    Article  CAS  Google Scholar 

  16. Zhou T, Wang NP, Xue Y, Ding TT, Liu X, Mo XM, Sun J. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B. 2016;143:415.

    Article  CAS  Google Scholar 

  17. Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW. A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 2012;3:2041731412443530.

    Article  Google Scholar 

  18. Hu XL, Liu S, Zhou GY, Huang YB, **e ZG, **g XB. Electrospinning of polymeric nanofibers for drug delivery applications. J Controlled Release 2014;185:12.

    Article  CAS  Google Scholar 

  19. Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics 2018;11:5.

    Article  Google Scholar 

  20. **ao YC, Lin LZ, Shen MW, Shi XY. Design of DNA aptamer-functionalized magnetic short nanofibers for efficient capture and release of circulating tumor cells. Bioconjugate Chem 2020;31:130.

    Article  CAS  Google Scholar 

  21. Wei JJ, Luo XM, Chen MH, Lu JF, Li XH. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin. Acta Biomater 2015;23:189.

    Article  CAS  Google Scholar 

  22. Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, **e J. Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv Healthcare Mater 2018;7:1701415.

    Article  Google Scholar 

  23. Zhang H, Liu Y, Chen MH, Luo XM, Li XH. Shape effects of electrospun fiber rods on the tissue distribution and antitumor efficacy. J Controlled Release 2016;244:52.

    Article  CAS  Google Scholar 

  24. Chen ZJ, Liu WP, Zhao L, **e SZ, Chen MH, Wang T, Li XH. Acid-labile degradation of injectable fiber fragments to release bioreducible micelles for targeted cancer therapy. Biomacromol 2018;19:1100.

    Article  Google Scholar 

  25. **ao YC, Fan Y, Tu WZ, Ning YS, Zhu MF, Liu Y, Shi XY. Multifunctional PLGA microfibrous rings enable MR imaging-guided tumor chemotherapy and metastasis inhibition through prevention of circulating tumor cell shedding. Nano Today. 2021;38:101123.

    Article  CAS  Google Scholar 

  26. John JV, Choksi M, Chen SX, Boda SK, Su YJ, McCarthy A, Teusink MJ, Reinhardt RA, **e J. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response. Nanomedicine. 2019;22:102081.

    Article  CAS  Google Scholar 

  27. Rawat A, Majumder QH, Ahsan F. Inhalable large porous microspheres of low molecular weight heparin: in vitro and in vivo evaluation. J Controlled Release 2008;128:224.

    Article  CAS  Google Scholar 

  28. Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, Bian L, Wu S, Zheng Y, Cheung KMC, Leung F, Yeung KWK. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 2018;174:1.

    Article  CAS  Google Scholar 

  29. Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B. 2017;159:217.

    Article  CAS  Google Scholar 

  30. Rezvantalab S, Drude NI, Moraveji MK, Guvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018;9:1260.

    Article  CAS  Google Scholar 

  31. Zhou SY, Wu ZK, Chen XS, Jia LS, Zhu W. PEGylated polyethylenimine as enhanced T(1) contrast agent for efficient magnetic resonance imaging. ACS Appl Mater Interfaces 2014;6:11459.

    Article  CAS  Google Scholar 

  32. Qiao GX, Lai ZJ, Gao JW, Liu WQ, Zheng YH. Lanthanide molecular model triggers sequential sensing performance. J Mol Liq 2020;311:113344.

    Article  CAS  Google Scholar 

  33. Liu CY, **e YC, Li XH, Yao XM, Wang XB, Wang M, Li ZX, Cao FJ. Folic acid/peptides modified PLGA-PEI-PEG polymeric vectors as efficient gene delivery vehicles: synthesis, characterization and their biological performance. Mol Biotechnol 2021;63:63.

    Article  CAS  Google Scholar 

  34. Pitarresi G, Palumbo FS, Cavallaro G, Faré S, Giammona G. Scaffolds based on hyaluronan crosslinked with a polyaminoacid: novel candidates for tissue engineering application. J Biomed Mater Res Part A. 2008;87A:770.

    Article  CAS  Google Scholar 

  35. Zhang N, Wang Y, Zhang CC, Fan Y, Li D, Cao XY, **a JD, Shi XY, Guo R. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors. Theranostics 2020;10:2791.

    Article  CAS  Google Scholar 

  36. Zhang CC, Sun WJ, Wang Y, Xu F, Qu J, **a JD, Shen MW, Shi XY. Gd-/CuS-loaded functional nanogels for MR/PA imaging-guided tumor-targeted photothermal therapy. ACS Appl Mater Interfaces 2020;12:9107.

    Article  CAS  Google Scholar 

  37. Gao Y, Ouyang ZJ, Yang C, Song C, Jiang CJ, Song SL, Shen MW, Shi XY. Overcoming T cell exhaustion via immune checkpoint modulation with a dendrimer-based hybrid nanocomplex. Adv Healthcare Mater 2021;10:2100833.

    Article  CAS  Google Scholar 

  38. Liu JY, **ong ZJ, Zhang JL, Peng C, Klajnert-Maculewicz B, Shen MW, Shi XY. Zwitterionic Gadolinium(III)-complexed dendrimer-entrapped gold nanoparticles for enhanced computed tomography/magnetic resonance imaging of lung cancer metastasis. Acs Appl Mater Interfaces 2019;11:15212.

    Article  CAS  Google Scholar 

  39. Zhuang Y, Zhou LZ, Zheng LF, Hu Y, Ding L, Li X, Liu CC, Zhao JH, Shi XY, Guo R. LAPONITE-polyethylenimine based theranostic nanoplatform for tumor-targeting CT imaging and chemotherapy. ACS Biomater Sci Eng 2017;3:431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (81761148028 and 21773026), the Science and Technology Commission of Shanghai Municipality (19XD1400100, 20520710300, 21490711500, and 20DZ2254900), the Shanghai Education Commission through the Shanghai Leading Talents Program, and the 111 Project (BP0719035) are gratefully acknowledged. This work was also supported by FCT-Fundação para a Ciência e a Tecnologia through the CQM Base Fund - UIDB/00674/2020, and Programmatic Fund - UIDP/00674/2020, and by ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, through the project M1420-01-0145-FEDER-000005 - Centro de Química da Madeira - CQM+ (Madeira 14-20 Program).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **angyang Shi or Mingwu Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15298 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Gao, Y., Yang, R. et al. Tumor-Anchoring Drug-Loaded Fibrous Microspheres for MR Imaging-Guided Local Chemotherapy and Metastasis Inhibition. Adv. Fiber Mater. 4, 807–819 (2022). https://doi.org/10.1007/s42765-022-00137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00137-8

Keywords

Navigation