Log in

Numerical modeling of wet steam infused fluid mixture for potential fire suppression applications

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

An advanced numerical model for modeling spontaneous condensation phenomena of water vapor was presented to investigate the flow behaviors in a converging-diverging nozzle for potential application in fire suppression using steam ejectors. The numerical model is validated against existing experimental data, which shows a good agreement. The proposed model was then compared against the ideal gas model in terms of various flow behaviors, including static pressure and Mach number in a newly designed nozzle. The condensing behaviors were accurately captured by the proposed model, while the idea gas model failed to do so. The condensation phenomena, including nucleation rate, droplet number, etc., in the nozzle, were discussed in detail. The accurate prediction results proved the possibility and demonstrated potential of applying the proposed model to broader fields of applications, especially into a steam ejector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

Total energy

h 1v :

Latent heat during phase change

J :

Nucleation rate

k B :

Boltzmann’s constant

:

Condensation rate of vapor

m v :

Mass of one molecule

N :

Number density of droplets

p, p sat :

Pressure, saturation pressure

q c :

Evaporation coefficient

r, r*:

Droplet radius, critical droplet radius

R :

Gas constant

S :

Supersaturation ratio

t :

Time

T, T d :

Temperature, temperature of a droplet

Y :

Liquid mass fraction

u i,j, k :

Generic velocity

δ ij :

Kronecker delta

γ :

Ratio of specific heat capacities

λ eff :

Effective thermal conductivity

μ eff :

Effective molecular dynamic viscosity

ν :

Correction factor

ϕ :

Non-isothermal correction factor

ρ, ρ v, ρ 1 :

Density of mixture, density of water vapor, density of water droplets

τ ij :

Stress tensor

x i,j, k :

Generic position in space

References

  • Duny, M., Dhima, D., Garo, J. P., Wang, H. Y. 2016. Numerical investigation on window ejected facade flames. J Build Eng, 8: 305–312.

    Article  Google Scholar 

  • Gerber, A. G., Kermani, M. J. 2004. A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int J Heat Mass Trans, 47: 2217–2231.

    Article  Google Scholar 

  • Han, Y., Guo, L., Wang, X., Yuen, A. C. Y., Li, C., Cao, R., Liu, H., Chen, T. B. Y., Tu, J., Yeoh, G. H. 2019a. A steam ejector refrigeration system powered by engine combustion waste heat: part 1. characterization of the internal flow structure. Appl Sci, 9: 4275.

    Article  Google Scholar 

  • Han, Y., Wang, X., Guo, L., Yuen, A. C. Y., Liu, H., Cao, R., Wang, C., Li, C., Tu, J., Yeoh, G. H. 2019b. A steam ejector refrigeration system powered by engine combustion waste heat: part 2. understanding the nature of the shock wave structure. Appl Sci, 9: 4435.

    Article  Google Scholar 

  • Han, Y., Wang, X., Yuen, A. C. Y., Li, A., Guo, L., Yeoh, G. H., Tu, J. 2020. Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system. Int J Refrig, 113: 296–307.

    Article  Google Scholar 

  • Hill, P. G. 1966. Condensation of water vapour during supersonic expansion in nozzles. J Fluid Mech, 25: 593–620.

    Article  Google Scholar 

  • Kuang, K., Chow, W. K., Ni, X., Yang, D., Zeng, W., Liao, G. 2011. Fire suppressing performance of superfine potassium bicarbonate powder. Fire Mater, 35: 353–366.

    Article  Google Scholar 

  • Li, A., Yuen, A. C. Y., Chen, T. B. Y., Wang, C., Liu, H., Cao, R., Yang, W., Yeoh, G. H., Timchenko, V. 2019. Computational study of wet steam flow to optimize steam ejector efficiency for potential fire suppression application. Appl Sci, 9: 1486.

    Article  Google Scholar 

  • Lin, B., Yuen, A. C. Y., Li, A., Zhang, Y., Chen, T. B. Y., Yu, B., Lee, E. W. M., Peng, S., Yang, W., Lu, H., Chan, Q., Yeoh, G. H., Wang, C. H. 2020. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J Hazard Mater, 381: 120952.

    Article  Google Scholar 

  • Liu, H., Wang, C., de Cachinho Cordeiro, I. M., Yuen, A. C. Y., Chen, Q., Chan, Q., Kook, S., Yeoh, G. H. 2020. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. J Build Eng, 28: 100999.

    Article  Google Scholar 

  • Liu, H., Yuen, A. C. Y., de Cachinho Cordeiro, I. M., Han, Y., Chen, T. B. Y., Chan, Q., Kook, S., Yeoh, G. H. 2021. A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numer Heat Tr A: Appl, 79: 570–593.

    Article  Google Scholar 

  • Mazzelli, F., Giacomelli, F., Milazzo, A. 2018. CFD modeling of condensing steam ejectors: Comparison with an experimental test-case. Int J Therm Sci, 127: 7–18.

    Article  Google Scholar 

  • Moses, C. A., Stein, G. D. 1978. On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements. J Fluids Eng, 100: 311–322.

    Article  Google Scholar 

  • Nakamura, Y., Usuki, T., Wakatsuki, K. 2020. Novel fire extinguisher method using vacuuming force applicable to space habitats. Fire Technol, 56: 361–384.

    Article  Google Scholar 

  • Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T., Aphornratana, S. 2007. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energ Convers Manage, 48: 2556–2564.

    Article  Google Scholar 

  • Starzmann, J., Hughes, F. R., Schuster, S., White, A. J., Halama, J., Hric, V., Kolovratník, M., Lee, H., Sova, L., Št’astný, M., Grübel, M., Schatz, M., Vogt, D. M., Patel, Y., Patel, G., Turunen-Saaresti, T., Gribin, V., Tishchenko, V., Gavrilov, I., Kim, C., Baek, J., Wu, X., Yang, J., Dykas, S., Wróblewski, W., Yamamoto, S., Feng, Z., Li, L. 2018. Results of the international wet steam modeling project. P I Mech Eng A: J Pow, 232: 550–570.

    Google Scholar 

  • Wen, C., Ding, H., Yang, Y. 2020. Performance of steam ejector with nonequilibrium condensation for multi-effect distillation with thermal vapour compression (MED-TVC) seawater desalination system. Desalination, 489: 114531.

    Article  Google Scholar 

  • Yang, L., Zhao, J. 2011. Fire extinct experiments with water mist by adding additives. J Therm Sci, 20: 563–569.

    Article  Google Scholar 

  • Young, J. B. 1992. Two-dimensional, nonequilibrium, wet-steam calculations for nozzles and turbine cascades. J Turbomach, 114: 569–579.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H. 2013. Numerical simulation of an enclosure fire in a large test hall. Comput Therm Sci, 5: 459–471.

    Article  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Chen, T. 2017. On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions. Int J Comput Fluid D 31: 324–337.

    Article  MathSciNet  Google Scholar 

  • Yuen, A. C. Y., Yeoh, G. H., Yuen, R. K. K., Chen, T. 2013. Numerical simulation of a ceiling jet fire in a large compartment. Procedia Eng, 52: 3–12.

    Article  Google Scholar 

  • Zhang, G., Dykas, S., Yang, S., Zhang, X., Li, H., Wang, J. 2020. Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Appl Therm Eng, 171: 115090.

    Article  Google Scholar 

  • Zhang, T., Liu, H., Han, Z., Wang, Y., Guo, Z., Wang, C. 2019. Experimental study on the synergistic effect of fire extinguishing by water and potassium salts. J Therm Anal Calorim, 138: 857–867.

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Australian Research Council (ARC Industrial Transformation Training Centre IC170100032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Chun Yin Yuen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., De Cachinho Cordeiro, I.M., Yuen, A.C.Y. et al. Numerical modeling of wet steam infused fluid mixture for potential fire suppression applications. Exp. Comput. Multiph. Flow 5, 142–148 (2023). https://doi.org/10.1007/s42757-021-0107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-021-0107-5

Keywords

Navigation