Log in

Univariate and Bivariate Compound Models Based on Random Sum of Variates with Application to the Insurance Losses Data

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In this article, we propose a new three-parameter model called compound zero-truncated Poisson gamma model. The corresponding variate of this model represents the zero-truncated Poisson sum of independent and identically distributed gamma random variables. Several mathematical properties of the proposed model are discussed. The proposed model can be unimodal as well as multimodal, moreover, gamma distribution can be obtained as a special case. The model parameters are estimated using expectation–maximization (EM)-type algorithm, and it is observed that it is quite convenient to be implemented in practice. Furthermore, an extension of the model is made to consider four-parameter bivariate model, and derived estimation of unknown parameters and confidence intervals based on EM-type algorithm. For validation purposes, some numerical simulation experiments are conducted to check how the proposed EM-type algorithm performs. Finally, the analysis of real data set has been presented to show the flexibility of the proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Asgharzadeh A, Esmaily L, Nadarajah S (2013) Approximate MLEs for the location and scale parameters of the skew logistic distribution. Stat Pap 54:391–411

    Article  MathSciNet  MATH  Google Scholar 

  2. Asgharzadeh A, Esmaeili L, Nadarajah S (2016) Balakrishnan skew logistic distribution. Commun Stat Theory Methods 45(2):444–464

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakouch HS, Ristic MM, Asgharzadeh A, Esmaily L, Al-Zahrani BM (2012) An exponentiated exponential binomial distribution with application. Stat Probab Lett 82:1067–1081

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreto-Souza W, Cribari-Neto F (2009) A Generalization of the exponential-Poisson distribution. Stat Probab Lett 79:2493–2500

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreto-Souza W (2012) Bivariate gamma-geometric law and its induced l’evy process. J Multivar Anal 109:130–145

    Article  MathSciNet  MATH  Google Scholar 

  6. Charpentier A (2014) Computational actuarial science with R. CRC Press, New York

    Book  MATH  Google Scholar 

  7. Dutang C, Charpentier A (2019) CASdatasets: insurance datasets. http://dutangc.free.fr/pub/RRepos

  8. Emmer S, Kratz M, Tasche D (2015) What is the best risk measure in practice? A comparison of standard measures. J Risk 18(2):31–60

    Article  Google Scholar 

  9. Evin G, Merleau J, Perreault L (2011) Two-component mixtures of normal, gamma, and Gumbel distributions for hydrological applications. Water Resour Res 47:W08525. https://doi.org/10.1029/2010WR010266

    Article  Google Scholar 

  10. Grun B, Miljkovic T (2019) Extending composite loss models using a general framework of advanced computational tools. Scand Actuar J 2019(8):642–660

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupta RD, Kundu D (2003) Discriminating between the Weibull and generalized exponential distributions. Comput Stat Data Anal 43:179–196

    Article  MathSciNet  MATH  Google Scholar 

  12. Kazemi R, Noorizadeh M (2015) A comparison between skew-logistic and skew normal distributions. Mathematika 31:15–24

    MathSciNet  Google Scholar 

  13. Kozubowski TJ, Panorska AK (2008) A mixed bivariate distribution connected with geometric maxima of exponential variables. Commun Stat Theory Methods 37:2903–2923

    Article  MathSciNet  MATH  Google Scholar 

  14. Kundu D (2014) Geometric skew normal distribution. Sankhya B76(2):167–189

    Article  MathSciNet  MATH  Google Scholar 

  15. Kundu D, Nekoukhou V (2018) Univariate and bivariate geometric discrete generalized exponential distribution. J Stat Theory Pract 12(3):595–614

    Article  MathSciNet  MATH  Google Scholar 

  16. Kupiec P (1995) Techniques for verifying the accuracy of risk measurement models. J Deriv 3(2):73–84

    Article  Google Scholar 

  17. Kus C (2007) A new lifetime distribution. Comput Stat Data Anal 51(9):4497–4509

    Article  MathSciNet  MATH  Google Scholar 

  18. Laird N (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J Am Stat Assoc 73(364):805–811

    Article  MATH  Google Scholar 

  19. Leinwander AJ, Aziz MA (2018) Modeling insurance claims using flexible skewed and mixture probability distributions. J Mod Appl Stat Methods 17(1):eP2467. https://doi.org/10.22237/jmasm/1525133100

    Article  Google Scholar 

  20. Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233

    MathSciNet  MATH  Google Scholar 

  21. Mahmoudi E, Jafari AA (2012) Generalized exponential-power series distributions. Comput Stat Data Anal 56:4047–4066

    Article  MathSciNet  MATH  Google Scholar 

  22. Raqab MZ, Al-Awadhi SA, Kundu D (2018) Discriminating among Weibull, log-normal, and log-logistic distributions. Commun Stat Simul Comput 47(5):1397–1419

    Article  MathSciNet  MATH  Google Scholar 

  23. Raqab MZ, Kundu D, Al-Awadhi FA (2021) Compound zero-truncated Poisson normal distribution and its applications. Commun Stat Theory Methods 50(13):3030–3050

    Article  MathSciNet  MATH  Google Scholar 

  24. Revfeim KJA (1984) An initial model of the relationship between rainfall events and daily rainfalls. J Hydrol 75(14):357–364

    Article  Google Scholar 

  25. Sophia DW, Sanku D, Hrishikesh C (2017) A new generalization of the gamma distribution with application to negatively skewed survival data. Commun Stat Simul Comput 47(7):2083–2101

    MathSciNet  MATH  Google Scholar 

  26. Tomarchio SD, Punzo A (2020) Dichotomous unimodal compound models: application to the distribution of insurance losses. J Appl Stat. https://doi.org/10.1080/02664763.2020.1789076

    Article  MathSciNet  MATH  Google Scholar 

  27. Tuneska BJ, Jolevski I (2013) Some results on the digamma function. Appl Math Inf Sci 1:167–170

    Article  MathSciNet  Google Scholar 

  28. Wahed AS, Ali MM (2001) The skew logistic distribution. J Stat Res 35(2):71–80

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and anonymous referees for their thoughtful remarks that greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Raqab.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices:

Here, we present some derivations for the Hessian matrix based on ZTP-EXP and BZTP-EXP models.

Appendix A: Hessian Matrix B and Vector S Components for UZTP-GA Model

$$\begin{aligned} B= \left( \begin{array}{ccc} \dfrac{\partial ^{2} l_{s}}{\partial \alpha ^{2}} \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \beta } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \theta } \\ \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \alpha } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \beta ^{2}} \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \theta } \\ \dfrac{\partial ^{2} l_{s}}{\partial \theta \ \partial \alpha } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \theta \ \partial \beta } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \theta ^{2}} \end{array} \right) \ \ \ \ \ \hbox {and} \ \ \ \ \ S=\bigg [\dfrac{\partial l_{s}}{\partial \alpha } \ \ \ \ \ \ \dfrac{\partial l_{s}}{\partial \beta } \ \ \ \ \ \ \dfrac{\partial l_{s}}{\partial \theta } \bigg ]^{T}, \end{aligned}$$

with

$$\begin{aligned} \dfrac{\partial l_{s}}{\partial \alpha }= & {} \displaystyle \sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}}) \ln y_{i}-\displaystyle \sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}})\Psi (\alpha E_{i}({\varvec{\Omega ^{(j)}}}))\\&+\,\ln \bigg ( \alpha \dfrac{\sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}})}{\sum _{i=1}^{n}y_{i}} \bigg )\displaystyle \sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}}),\\ \dfrac{\partial l_{s}}{\partial \beta }= & {} \dfrac{\alpha }{\beta }\displaystyle \sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}})-\displaystyle \sum _{i=1}^{n}y_{i},\\ \dfrac{\partial l_{s}}{\partial \theta }= & {} \dfrac{\sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}})}{\theta }-\dfrac{ne^{\theta }}{e^{\theta }-1},\\ \dfrac{\partial ^{2} l_{s}}{\partial \alpha ^{2}}= & {} \dfrac{1}{\alpha }\displaystyle \sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}})-\displaystyle \sum _{i=1}^{n}(E_{i}({\varvec{\Omega ^{(j)}}}))^{2}\Psi ^{'}(\alpha E_{i}({\varvec{\Omega ^{(j)}}})),\\ \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \beta }= & {} \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \alpha }=\dfrac{1}{\beta }\displaystyle \sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}}), \\ \dfrac{\partial ^{2} l_{s}}{\partial \beta ^{2}}= & {} -\dfrac{\alpha }{\beta ^{2}}\displaystyle \sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}}), \ \ \, \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \theta ^{2}}=-\dfrac{\sum _{i=1}^{n}E_{i}({\varvec{\Omega ^{(j)}}})}{\theta ^2}+\dfrac{ne^{-\theta }}{(1-e^{-\theta })^{2}}, \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial ^{2} l_{s}}{\partial \theta \ \partial \alpha }=\dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \theta }=\dfrac{\partial ^{2} l_{s}}{\partial \theta \ \partial \beta }=\dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \theta }=0. \end{aligned}$$

Appendix B: Hessian Matrix B and Vector S Components for BZTP-GA Model

$$\begin{aligned} B= \left( \begin{array}{cccc} \dfrac{\partial ^{2} l_{s}}{\partial \alpha ^{2}} \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \beta } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \lambda } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial p} \\ \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \alpha } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \beta ^{2}} \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \lambda } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial p} \\ \dfrac{\partial ^{2} l_{s}}{\partial \lambda \ \partial \alpha } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \lambda \ \partial \beta } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \lambda ^{2}} \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \lambda \ \partial p} \\ \dfrac{\partial ^{2} l_{s}}{\partial p \ \partial \alpha } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial p \partial \beta } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial p \ \partial \lambda } \ \ \ &{} \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial p^{2}} \end{array} \right) \ \ \ \ \ \hbox {and} \ \ \ \ \ S=\bigg [\dfrac{\partial l_{s}}{\partial \alpha } \ \ \ \ \ \ \dfrac{\partial l_{s}}{\partial \beta } \ \ \ \ \ \ \dfrac{\partial l_{s}}{\partial \lambda } \ \ \ \ \ \dfrac{\partial l_{s}}{\partial p} \bigg ]^{T}, \end{aligned}$$

with

$$\begin{aligned} \dfrac{\partial l_{s}}{\partial \alpha }= & {} \displaystyle \sum _{i=1}^{n}m_{i}^{(j)} \ln z_{i}-\displaystyle \sum _{i=1}^{n}m_{i}^{(j)}\Psi (\alpha m_{i}^{(j)})+\ln \bigg ( \alpha \dfrac{\sum _{i=1}^{n}m_{i}^{(j)}}{\sum _{i=1}^{n}z_{i}} \bigg )\displaystyle \sum _{i=1}^{n}m_{i}^{(j)},\\ \dfrac{\partial l_{s}}{\partial \beta }= & {} \dfrac{\alpha }{\beta }\displaystyle \sum _{i=1}^{n}m_{i}^{(j)}-\displaystyle \sum _{i=1}^{n}z_{i}, \ \ \ \ \ \dfrac{\partial l_{s}}{\partial \lambda }=\dfrac{1}{\lambda } \displaystyle \sum _{i=1}^{n}v_{i}-\dfrac{n e^{\lambda }}{e^{\lambda }-1},\\ \dfrac{\partial l_{s}}{\partial p}= & {} \dfrac{1}{p}\displaystyle \sum _{i=1}^{n} m_{i}^{(j)}-\dfrac{1}{1-p}\displaystyle \sum _{i=1}^{n}(v_{i}-m_{i}^{(j)})-\displaystyle \sum _{i=1}^{n} \bigg [\dfrac{v_{i}(1-p)^{v_{i}-1}}{1-(1-p)^{v_{i}}}\bigg ],\\ \dfrac{\partial ^{2} l_{s}}{\partial \alpha ^{2}}= & {} \dfrac{1}{\alpha }\displaystyle \sum _{i=1}^{n}m_{i}^{(j)}-\displaystyle \sum _{i=1}^{n}(m_{i}^{(j)})^{2}\Psi ^{'}(\alpha m_{i}^{(j)}), \ \ \ \ \ \dfrac{\partial ^{2} l_{s}}{\partial \beta ^{2}}= -\dfrac{\alpha }{\beta ^{2}}\displaystyle \sum _{i=1}^{n}m_{i}^{(j)},\\ \dfrac{\partial ^{2} l_{s}}{\partial \lambda ^{2}}= & {} -\dfrac{1}{\lambda ^{2}}\displaystyle \sum _{i=1}^{n}v_{i}+\dfrac{ne^{-\lambda }}{(1-e^{-\lambda })^{2}}, \\ \dfrac{\partial ^{2} l_{s}}{\partial p^{2}}= & {} -\dfrac{1}{p^{2}}\displaystyle \sum _{i=1}^{n}m_{i}^{(j)}- \dfrac{1}{(1-p)^{2}} \bigg (\displaystyle \sum _{i=1}^{n}(v_{i}-m_{i}^{(j)})\bigg )\\&+\,\displaystyle \sum _{i=1}^{n}\bigg [\dfrac{v_{i}(v_{i}-1)(1-p)^{v_{i}-2}+(1-p)^{2v_{i}-2}}{(1-(1-p)^{v_{i}})^{2}} \bigg ],\\ \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \beta }= & {} \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \alpha }=\dfrac{1}{\beta }\displaystyle \sum _{i=1}^{n}m_{i}^{(j)}, \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial \lambda }= & {} \dfrac{\partial ^{2} l_{s}}{\partial \lambda \ \partial \beta }=\dfrac{\partial ^{2} l_{s}}{\partial \beta \ \partial p}=\dfrac{\partial ^{2} l_{s}}{\partial p \ \partial \beta }= \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial \lambda }\\= & {} \dfrac{\partial ^{2} l_{s}}{\partial \lambda \ \partial \alpha }= \dfrac{\partial ^{2} l_{s}}{\partial \alpha \ \partial p}=\dfrac{\partial ^{2} l_{s}}{\partial p \ \partial \alpha }=\dfrac{\partial ^{2} l_{s}}{\partial \lambda \ \partial p}=\dfrac{\partial ^{2} l_{s}}{\partial p \ \partial \lambda }=0. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraou, M.A., Al-Kandari, N.M. & Raqab, M.Z. Univariate and Bivariate Compound Models Based on Random Sum of Variates with Application to the Insurance Losses Data. J Stat Theory Pract 16, 56 (2022). https://doi.org/10.1007/s42519-022-00282-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-022-00282-8

Keywords

Mathematics Subject Classification

Navigation