Log in

Particle packing models to determine time-dependent slip flow properties of highly filled polyurethane-based propellant

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Hydroxyl-terminated polybutadiene (HTPB) is a reliable binder to build a strong polyurethane network for materials with more than 85 wt% of fillers, such as composite solid propellant (CSP), a fuel for space launch vehicles. However, a careful composition design is still challenging as high filler contents intricate the process, and it is responsible for both the perfection of a solid structure of CSP and the safety of the vehicle. The PU-based liquid contents (LC) CSP consists of HTPB, diisocyanate compound, amine compound, and plasticiser. The fillers include aluminium and ammonium perchlorate particles. The tendency of aluminium to agglomerate in PU-based LC and to be dispersed in the plasticiser, combined with the formation of a polyurethane network, causes time-dependency in viscosity of the CSP slurry. Thus, models to predict initial viscosity and minimum viscosity are highly demanded. In this work, particle packing models for both types of viscosity are proposed considering the wall slip phenomenon and the nature of the constituents. The models were tested on CSP slurry with 87.5–90 wt% fillers, including 15–20 wt% micro-aluminium. Based on viscosity measurements, high correlation levels (r = 0.7–0.99) were found in the correlation between particle packing parameters and the viscosities. This convinces the reliability of the models for predicting the initial and minimum viscosities of CSP. Moreover, phenomena revealed by a deep analysis of the start-up of shear flow, such as increasing shear modulus and residual stress with increasing particle packing parameters and the existence of positive and negative thixotropic behaviours, can be clearly explained by the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lysien K, Stolarczyk A, Jarosz T (2021) Solid propellant formulations: a review of recent progress and utilized components. Materials 14:16657. https://doi.org/10.3390/ma14216657

    Article  CAS  Google Scholar 

  2. Restasari A, Budi RS, Hartaya K (2018) Effects of ammonium perchlorate composition on high content aluminium propellant slurry. J Teknol Dirgant 15(2):105–114. https://doi.org/10.30536/j.jtd.2017.v0.a2509

    Article  Google Scholar 

  3. Rodi V, Bajlovski M (2006) Influence of trimodal fraction mixture of ammonium-perchlorate on characteristics of composite rocket propellants. Sci Rev 56(2):38–44

    Google Scholar 

  4. Nair CPR, Prasad CHDV, Ninan KN (2013) Effect of process parameters on the viscosity of AP/Al/HTPB based solid propellant slurry. J Energy Chem Eng 1(1):1–9

    Google Scholar 

  5. Tüzün FN (2005) The effect of aluminum content variation on burning rate, pressure-propellant area ratio relationship, and other properties of hydroxyl terminated polybutadiene based composite propellants. J ASTM Int 2(4):1–15. https://doi.org/10.1520/JAI12936

    Article  Google Scholar 

  6. Lempert DB, Manelis GB, Nechiporenko GN (2009) The ways for development of enviromentally safe solid composite propellants. Prog Propuls Phys 1:63–80. https://doi.org/10.1051/eucass/200901063

    Article  Google Scholar 

  7. Babu KVS, Raju PK, Thomas CR, Hamed AS, Ninan KN (2017) Studies on composite solid propellant with tri-modal ammonium perchlorate containing an ultra fine fraction. Def Technol 3:239–245. https://doi.org/10.1016/j.dt.2017.06.001

    Article  Google Scholar 

  8. Restasari A, Abdillah LH, Ardianingsih R, Sitompul HRD, Budi RS, Hartaya K, Wibowo HB (2021) Thixotropic behavior in defining particle packing density of highly filled AP/HTPB-based propellant. Symmetry 13:1767. https://doi.org/10.3390/sym13101767

    Article  CAS  Google Scholar 

  9. Pinalia A, Prianto B, Setyaningsih H (2021) Preliminary results of DOA plasticizer effect on AP/HTPB composite propellant characteristics. AIP Conf Proc 0400:2366. https://doi.org/10.1063/5.0061303

    Article  CAS  Google Scholar 

  10. Restasari A, Abdillah LH (2017) Pengaruh dioctyl adipate terhadap pot-life propelan berformula AP trimoda. In: Prosiding SIPTEKGAN XXI, pp 314–322

  11. Yadav A, Pant CS, Das S (2020) Research advances in bonding agents for composite propellants. Propellants Explos Pyrotech 45(5):695–704. https://doi.org/10.1002/prep.201900329

    Article  CAS  Google Scholar 

  12. Kakavas-Papaniaros PA (2020) On the distribution of particles in propellant solids. Acta Mech 231:3. https://doi.org/10.1007/s00707-019-02553-1

    Article  Google Scholar 

  13. Abdillah LH, Winardi S, Sumarno S, Nurtono T (2018) Effect of mixing time to homogeneity of propellant slurry. IPTEK J Proc Ser 1:94–98. https://doi.org/10.12962/j23546026.y2018i1.3515

    Article  Google Scholar 

  14. Restasari A, Budi RS, Hartaya K (2018) Pseudoplasticity of propellant slurry with varied aluminium content for castability development. J Phys Conf Ser 1005:012034. https://doi.org/10.1088/1742-6596/1005/1/012034

    Article  CAS  Google Scholar 

  15. Teipel U, Forter-Barth U (2001) Rheology of nano-scaled aluminum suspensions. Propellants Explos Pyrotech 26(2):268–272

    Article  CAS  Google Scholar 

  16. Iwasaki A, Matsumoto K, Ban R, Yoshihama S, Nakamura T, Habu H (2016) The continuous mixing process of composite solid propellant slurry by an artificial muscle actuator. Trans Japan Soc Aeronaut Sp Sci Aerosp Technol Japan 14(30):107–110. https://doi.org/10.2322/tastj.14.Pa_107

    Article  Google Scholar 

  17. Li T, Xu J, Han J, He Y (2021) Effect of microstructure on micro-mechanical properties of composite solid propellant. Micromachines 12:1378. https://doi.org/10.3390/mi12111378

    Article  Google Scholar 

  18. Hoffmann LFS, Bizarria FCP, Bizarria JWP (2020) Detection of liner surface defects in solid rocket motors using multilayer perceptron neural networks. Polym Test 88:106559. https://doi.org/10.1016/j.polymertesting.2020.106559

    Article  CAS  Google Scholar 

  19. Coffelt C, Olsen D, Miller C, Zhou M (2022) Effect of void positioning on the detonation sensitivity of a heterogeneous energetic material. J Appl Phys 131:065101. https://doi.org/10.1063/5.0081188

    Article  CAS  Google Scholar 

  20. Majcher A, Przybylski J, Figarski J (2017) A control system for stand for measuring the burn rate of solid rocket propellants using Crawford’s method. J Mach Constr Maint 3:67–73

    Google Scholar 

  21. Rueda MM, Auscher MC, Fulchiron M, Perie T, Martin G, Sonntag P, Cassagnau P (2017) Rheology and applications of highly filled polymers: a review of current understanding. Prog Polym Sci 66:22–53. https://doi.org/10.1016/j.progpolymsci.2016.12.007

    Article  CAS  Google Scholar 

  22. Wilms P, Wieringa J, Blijdenstein T, Van Malssen K, Hinrichs J, Kohlus R (2020) Wall slip of highly concentrated non-brownian suspensions in pressure driven flows: a geometrical dependency put into a non-newtonian perspective. J Nonnewton Fluid Mech 282:104336. https://doi.org/10.1016/j.jnnfm.2020.104336

    Article  CAS  Google Scholar 

  23. Wilms P, Wieringa J, Blijdenstein T, Van Malssen K, Hinrichs J, Kohlus R (2022) On the difficulty of determining the apparent wall slip of highly concentrated suspensions in pressure driven flows: the accuracy of indirect methods and best practice. J Nonnewton Fluid Mech 299:104694. https://doi.org/10.1016/j.jnnfm.2021.104694

    Article  CAS  Google Scholar 

  24. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  25. Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 47(5):1211–1226. https://doi.org/10.1122/1.1595098

    Article  CAS  Google Scholar 

  26. Kalyon DM (2005) Apparent slip and viscoplasticity of concentrated suspensions. J Rheol 49(3):621–640. https://doi.org/10.1122/1.1879043

    Article  CAS  Google Scholar 

  27. Lade R, Wasewar K, Sangtyani R, Kumar A, Shende D, Peshwe D (2018) Rheological and wall-slip behaviour of composite propellant suspension containing al-nanopowder. J Energ Mater 36(4):468–484. https://doi.org/10.1080/07370652.2018.1493056

    Article  CAS  Google Scholar 

  28. Xu C, Fieß M, Willenbacher N (2017) Impact of wall slip on screen printing of front-side silver pastes for silicon solar cells. IEEE J Photovolt. https://doi.org/10.1109/JPHOTOV.2016.2626147

    Article  Google Scholar 

  29. Gallier S (2009) A stochastic pocket model for aluminum agglomeration in solid propellants. Propellants Explos Pyrotech 34(2):97–105. https://doi.org/10.1002/prep.200700260

    Article  CAS  Google Scholar 

  30. Shabana S, Sonawane SH, Ranganathan V, Pujjalwar PH, Pinjari DV, Bhanvase BA, Gogate PR, Ashokkumar M (2016) Improved synthesis of aluminium nanoparticles using ultrasound assisted approach and subsequent dispersion studies in di-octyl adipate. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2016.11.020

    Article  Google Scholar 

  31. Oliveira JIS, Pires DC, Diniz MF, Siqueira JL, Mattos EC, Rezende LC, Lha K, Dutra RCL (2014) Determination of primary amine content in bonding agent used in composite solid propellants. Propellants Explos Pyrotech 39(4):1–7. https://doi.org/10.1002/prep.201300147

    Article  CAS  Google Scholar 

  32. Santhosh G, Reshmi S, Nair CPR (2020) Rheokinetic characterization of polyurethane formation in a highly filled composite solid propellant. J Therm Anal Calorim 140:213–223. https://doi.org/10.1007/s10973-019-08793-6

    Article  CAS  Google Scholar 

  33. Hutauruk J, Bura RO, Wibowo HB (2020) Karakterisasi ukuran dan bentuk amonium perklorat china, korea selatan dan indonesia serta potensi pengaruhnya terhadap karakteristik propelan. J Teknol Dirgant 18(1):53–62. https://doi.org/10.30536/j.jtd.2020.v18.a3346

    Article  Google Scholar 

  34. Sitompul HR, Wibowo HB, Abdillah LH, Ardianingsih R, Restasari A (2021) Integrated quality analysis method of aluminum for composite propellant production. J Teknol Dirgant 19(2):177–192. https://doi.org/10.30536/j.jtd.2021.v19.a3655

    Article  Google Scholar 

  35. Chen L-T, Chen C-Y, Chen H-N (2019) FCC or HCP: the stable close-packed lattice of crystallographically equivalent spherical micelles in block copolymer homopolymer blend. Polymer 169:131–137. https://doi.org/10.1016/j.polymer.2019.02.041

    Article  CAS  Google Scholar 

  36. Furnas CC (1931) Grading aggregates I—mathematical relations for beds of broken solids of maximum density. Ind Eng Chem 23(9):1052–1058. https://doi.org/10.1021/ie50261a017

    Article  CAS  Google Scholar 

  37. Ye X, Li Y, Ai Y, Nie Y (2018) Novel powder packing theory with bimodal particle size distribution-application in superalloy. Adv Powder Technol 29(9):2280–2287. https://doi.org/10.1016/j.apt.2018.06.012

    Article  CAS  Google Scholar 

  38. Hoque E, Pant CS, Das S (2020) Study on friction sensitivity of passive and active binder-based composite solid propellants and correlation with burning rate. Def Sci J 70(2):159–165. https://doi.org/10.14429/dsj.70.14802

    Article  CAS  Google Scholar 

  39. Brookfield Engineering Laboratories (2014) More solutions for sticky problems. Brookfield Engineering Laboratories Inc, Massachusetts

    Google Scholar 

  40. Brookfield Engineering Laboratories. BROOKFIELD DV3T Viscometer operating instructions manual No. M13-2100-A0415, vol 8139. Brookfield Engineering Laboratories Inc, Middleboro

  41. Briggs JL, Steffe JF (1997) Using Brookfield data and the Mitschka method to evaluate power law foods. J Texture Stud 28:517–522. https://doi.org/10.1111/j.1745-4603.1997.tb00134.x

    Article  Google Scholar 

  42. Haminiuk CWI, Maciel GM, Plata-Oviedo MSV, Quenehenn A, Scheer AP (2009) Study of the rheological parameters of honey using the mitschka method study of the rheological parameters of honey using the mitschka method. Int J Food Eng 5(3):1–9. https://doi.org/10.2202/1556-3758.1572

    Article  Google Scholar 

  43. Masubuchi Y, Watanabe H (2014) Origin of stress overshoot under start-up shear in primitive chain network simulation. ACS Macro Lett 3:1183–1186. https://doi.org/10.1021/mz500627r

    Article  CAS  Google Scholar 

  44. Kubo MTK, Rojas ML, Miano AC, Augusto PED (2019) Rheological properties of tomato products. In: Poretta S (ed) Tomato chemistry, industrial processing and product development. The Royal Society of Chemistry, Croydon

  45. Osman MA, Atallah A, Schweizer T, Öttinger HC (2004) Particle–particle and particle-matrix interactions in calcite filled high-density polyethylene—steady shear. J Rheol 48(5):1167–1184. https://doi.org/10.1122/1.1784782

    Article  CAS  Google Scholar 

  46. Obaid N, Kortschot MT, Sain M (2017) Understanding the stress relaxation behavior of polymers reinforced with short elastic fibers. Materials 10(472):1–15. https://doi.org/10.3390/ma10050472

    Article  CAS  Google Scholar 

  47. Anneja A, Wilkes GL, Rightor EG (2003) A study of slabstock flexible polyurethane foams based on varied toluene diisocyanate isomer ratios. J Polym Sci Part B Polym Physics 41(3):258–268. https://doi.org/10.1002/polb.10363

    Article  CAS  Google Scholar 

  48. Restasari A, Hamid N, Marpaung L, Rusnaenah A, Sukma A, Sukma R (2021) Structure relaxation disruption on temperature- dependence of polymerization of HTPB-based polyurethane. J Teknol Dirgant 19(2):193–200. https://doi.org/10.30536/j.jtd.2021.v19.a3654

    Article  Google Scholar 

  49. Ardianingsih R, Kumoro AC (2019) Analisis viskositas slurry propelan untuk akurasi karakterisasi rheologi berbasis perekat hidroxy terminated polybutadiene dengan plasticizer dioctyl adipate. Teknik 40(3):154–160. https://doi.org/10.14710/teknik.v40i3.27209

    Article  Google Scholar 

  50. Rodic V, Petric M (2004) The effect of additives on solid rocket propellant characteristics. Sci Tech Rev 54(3–4):9–14

    CAS  Google Scholar 

  51. Erisken C, Gocmez A, Yilmazer U, Pekel F, Ozkar S (1998) Modeling and rheology of htpb based composite solid propellants. Polym Compos 19(4):463–472. https://doi.org/10.1002/pc.10121

    Article  CAS  Google Scholar 

  52. Lade R, Wasewar K, Sangtyani R, Kumar A, Shende D, Peshwe D (2019) Effect of aluminum nanoparticles on rheological behavior of HTPB-based composite rocket propellant. J Energ Mater 37(2):125–140. https://doi.org/10.1080/07370652.2018.1543737

    Article  CAS  Google Scholar 

  53. Nitta K-H, Kuriyagawa M (2012) Reinforcement of plastomeric segmented polyurethane, In: Cavaco LI, Melo JA (ed) Polyurethane, properties, structure and applications. Nova Science Publishers Inc, New York

  54. Yudin VE, Otaigbe JU, Svetlichnyi VM, Korytkova EN, Almjasheva OV, Gusarov VV (2008) Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polyimide nanocomposites. Express Polym Lett 2(7):485–493. https://doi.org/10.3144/expresspolymlett.2008.58

    Article  CAS  Google Scholar 

  55. Bika DG, Gentzler M, Michaels, (2001) Mechanical properties of agglomerates. Powder Technol 117(1–2):98–112. https://doi.org/10.1016/S0032-5910(01)00318-7

    Article  CAS  Google Scholar 

  56. Arabani M, Karami MV (2007) Geomechanical properties of lime stabilized clayey sands. Arab J Sci Eng 32(1B)

  57. Tunnicliffe LB, Nelson K, Pan S, Curtis J, Herd CR (2020) Reinforcement of rubber by carbon black and lignin-coated nanocellulose fibrils. Rubber Chem Technol 93(4):633–651. https://doi.org/10.5254/RCT.20.79961

    Article  Google Scholar 

  58. Wolff S, Wang MJ (1993) Carbon black reinforcement of elastomerss. In: Donnet J-B, Bansal RC, Wang M-J (eds) Carbon black, 2nd edn. Taylor and Francis, New York

    Google Scholar 

  59. Lawandy SN, Halim SF, Darwish NA (2009) Structure aggregation of carbon black in ethylene-propylene diene polymer. Express Polym Lett 3(3):152–158. https://doi.org/10.3144/expresspolymlett.2009.20

    Article  CAS  Google Scholar 

  60. Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y (2006) Visualization of carbon black networks in rubbery matrix by skeletonisation of 3D TEM image. Polymer 47:3298–3301. https://doi.org/10.1016/j.polymer.2006.03.008

    Article  CAS  Google Scholar 

  61. Evdokimov IN, Losev AP (2011) Thixotropy in native petroleum emulsions. J Dispers Sci Technol 32(8):1206–1212. https://doi.org/10.1080/01932691.2010.505530

    Article  CAS  Google Scholar 

  62. Li Y, Hou WG, Zhu WQ (2007) Thixotropic properties of aqueous suspensions containing cationic starch and aluminum magnesium hydrotalcite-like compound. J Colloid Interface Sci 313:305–314. https://doi.org/10.1016/j.jcis.2007.03.071

    Article  CAS  Google Scholar 

  63. Gatos KG, Kameo K, Karger-Kocsis J (2007) On the friction and sliding wear of rubber/layered silicate nanocomposites. Express Polym Lett 1(1):27–31. https://doi.org/10.3144/expresspolymlett.2007.6

    Article  CAS  Google Scholar 

  64. Mohammadi M, Shadizadeh SR, Manshad AK, Mohammadi AH (2020) Experimental study of the relationship between porosity and surface area of carbonate reservoir rocks. J Pet Explor Prod Technol 10:1817–1834. https://doi.org/10.1007/s13202-020-00838-z

    Article  CAS  Google Scholar 

  65. Rubio-Hernández FJ (2018) Rheological behavior of fresh cement pastes. Fluids 3:106. https://doi.org/10.3390/fluids3040106

    Article  CAS  Google Scholar 

  66. Cloitre M, Bonnecaze R (2017) A review on wall slip in high solid dispersions. Rheol Act 56(3):283–305. https://doi.org/10.1007/s00397-017-1002-7

    Article  CAS  Google Scholar 

  67. Abdel-Hafez AA, Brodt MW, Carney JR, Lightstone JM (2011) Laser dispersion and ignition of metal fuel particles. Rev Sci Instrum 82:064101. https://doi.org/10.1063/1.3598341

    Article  CAS  Google Scholar 

  68. Ramaswamy AL, Shin H, Armstrong RW, Lee CH, Sharma J (1996) Nanosecond and picosecond laser-induced cracking and ignition of single crystals of ammonium perchlorate. J Mater Sci 31:6035–6042. https://doi.org/10.1007/BF01152156

    Article  CAS  Google Scholar 

  69. Medvedev VV, Forat EV, Tsipilev VP, Yakovlev AN (2017) The effect of aluminum particles dispersity on characteristics of ammonium perchlorate—aluminum composition laser ignition. J Phys Conf Ser 830:012146. https://doi.org/10.1088/1742-6596/755/1/011001

    Article  CAS  Google Scholar 

  70. Catalano R, Slomberg D, Picard C, Hucher N, Vidal V, Saint-Antonin F, Hubaud JC, Rose J, Labille J (2021) In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion-toward safer-by-design products. Environ Sci Nano 8:3546–3559. https://doi.org/10.1039/d1en00345c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the RISPRO-LPDP Competitive Research Program KEP-27/LPDP/2020 and National Agency for Research and Innovation (BRIN) for funding the research.

Funding

This research was funded by RISPRO-LPDP Competitive Research Program Batch-II with contract No. 082.01.06.3534.001.002.053A.524119 and Skep-27/LPDP/2020. It is also funded by Research Organization for Aeronautics and Space, National Agency for Research and Innovation (BRIN), with research funding No. B-4/III/PN/1/2022.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, methodology, and writing—original draft: AR; Investigation and validation: AR, LHA, RA, RSB, HRDS; Visualisation, writing—review and editing: AR, LHA, RA, BP, AP, K, EDA, HR; Funding acquisition, resources and project administration: HBW and KH; Supervision: HBW.

Corresponding author

Correspondence to Afni Restasari.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 241 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restasari, A., Abdillah, L.H., Ardianingsih, R. et al. Particle packing models to determine time-dependent slip flow properties of highly filled polyurethane-based propellant. J Rubber Res 25, 157–170 (2022). https://doi.org/10.1007/s42464-022-00166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-022-00166-3

Keywords

Navigation