Log in

3D-Druck von Al2O3-Keramiken mittels Material Extrusion

  • Anwendungen und Verfahren
  • Published:
Keramische Zeitschrift

Abstract: In this article, the manufacturing of Al2O3 ceramics by 3D printing through different methods of material extrusion is investigated in terms of porosity, density and flexural strength. The methods of cold plastic material extrusion with pastes and thermoplastic material extrusion with filament and with granules are compared. It can be shown that significant differences result with regard to the physical properties investigated, which can be attributed to the processes used, to the specific machines and the starting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bild 1
Bild 2
Bild 3
Bild 4
Bild 5
Bild 6
Bild 7
Bild 8
Bild 9
Bild 10
Bild 11

Similar content being viewed by others

Literaturhinweise

  1. "DIN EN ISO/ASTM 52900. Additive Fertigung - Grundlagen - Terminologie", 2022.

  2. W. Kollenberg, Additive Fertigung keramischer Komponenten, 1. Aufl. Vulkan Verlag, 2020.

  3. S. S. Crump, "Apparatus and Method for Creating Three-Dimensional Objects", US 5121329, 1989.

  4. D. Nikolay und W. Kollenberg, "Additive Fertigung von Keramik - Wo stehen wir heute ?", Keramische Zeitschrift, Bd. 73, Nr. 6, S. 30-37, 2021.

  5. J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, und C. Holzer, "Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives", Materials (Basel)., Bd. 11, Nr. 5, 2018.

  6. P. Schlautmann, "FFD Fused Feedstock Depositioning Additive Fertigung von Bauteilen aus CIM und MIM-Feedstock", in Keramik+, 2019.

  7. F. J. Clemens, A. Hadian, und F. Fricke, "Material extrusion-based additive manufacturing for ceramics using thermoplastic feedstocks", cfi Ceram. Forum Int., Bd. 99, Nr. 4, S. 96-100, 2022.

  8. A. Hadian, M. Fricke, A. Liersch, und F. Clemens, "Material Extrusion additive manufacturing of zirconia parts using powder injection molding feedstock compositions", Addit. Manuf., Bd. 57, Nr. June, S. 102966, 2022.

  9. S. C. Danforth u. a., "Solid Freeform Fabrication Methods", US 5738817, 1996.

  10. R. Vaidyanathan, J. Walish, J. L. Lombardi, S. Kasichainula, P. Calvert, und K. C. Cooper, "Extrusion freeforming of functional ceramic prototypes", Jom, Bd. 52, Nr. 12, S. 34-37, 2000.

  11. N. C. Fan, W. C. J. Wei, B. H. Liu, A. B. Wang, und R. C. Luo, "Ceramic feedstocks for additive manufacturing", Proc. IEEE Int. Conf. Ind. Technol., Bd. 2016-May, S. 1147-1151, 2016.

  12. D. Nötzel und T. Hanemann, "New feedstock system for fused filament fabrication of sintered alumina parts", Materials (Basel)., Bd. 13, Nr. 19, S. 1-12, 2020.

  13. D. Nötzel, R. Eickhoff, C. Pfeifer, und T. Hanemann, "Printing of zirconia parts via fused filament fabrication", Materials (Basel)., Bd. 14, Nr. 19, 2021.

  14. B. Khatri, K. Lappe, M. Habedank, T. Mueller, C. Megnin, und T. Hanemann, "Fused deposition modeling of ABS-barium titanate composites: A simple route towards tailored dielectric devices", Polymers (Basel)., Bd. 10, Nr. 6, 2018.

  15. C. Warnier, Dinge drucken : wie 3D-Drucken das Design verändert -. Berlin: Gestalten, 2014.

  16. J. Cesarano III und P. D. Cavert, "Freeforming Objects with Low-Binder Slurry", US 6027326, 1997.

  17. J. Cesarano, "A review of robocasting technology", Mater. Res. Soc. Symp. - Proc., Bd. 542, S. 133-139, 1999.

  18. Y. Maazouz u. a., "Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks", J. Mater. Chem. B, Bd. 2, Nr. 33, S. 5378-5386, 2014.

  19. M. Mohammadi u. a., "Robocasting of single and multi-functional calcium phosphate scaffolds and its hybridization with conventional techniques: Design, fabrication and characterization", Appl. Sci., Bd. 10, Nr. 23, S. 1-22, 2020.

  20. B. Dietemann, L. Wahl, N. Travitzky, H. Kruggel-Emden, T. Kraft, und C. Bierwisch, "Reorientation of Suspended Ceramic Particles in Robocasted Green Filaments during Drying", Materials (Basel)., Bd. 15, Nr. 6, 2022.

  21. J. E. Smay, B. Tuttle, und J. C. III, "Robocasting of Three-Dimensional Piezoelectric Structures BT - Piezoelectric and Acoustic Materials for Transducer Applications", A. Safari und E. K. Akdoğan, Hrsg. Boston, MA: Springer US, 2008, S. 305-318.

  22. M. T. Birosz, D. Ledenyák, und M. Andó, "Effect of FDM infill patterns on mechanical properties", Polym. Test., Bd. 113, Nr. June, 2022.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, A., Nikolay, D. 3D-Druck von Al2O3-Keramiken mittels Material Extrusion. Keram. Z. 74, 24–31 (2022). https://doi.org/10.1007/s42410-022-1105-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42410-022-1105-3

Navigation