Log in

Ester-Functionalized Ferrocene Based Polyvinylbenzyl Chloride Nanofiber as a Decyanidating Agent

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The need for develo** a decyanidating agent has been inspired by the extreme toxicity of cyanide which could lead to serious health challenges. Herein, the diazotization-esterification mechanism was employed to synthesize 1-(2-pyridylazo)-2-naphthyl-bis(ƞ5-cyclopentadienyl)iron carboxylate, FePNCp, which was further embedded on synthesized electrospun polyvinyl-benzyl chloride (ePVBC) to form a functionalized nanofiber composite material of poly(ferrocenyl-l-(2-pyridylazo)-2-naphthylvinylbenzylchloride, (FePNCp-PVBC). The morphology of the functionalized nanofiber showed a smooth fibrous and porous assembled structure with an average particle size of 19.92 nm. However, due to the intrinsic properties of the newly produced material, it was applied in the entrap** of cyanide ions from an aqueous medium. With a sorbent dosage of 0.01 g in 8 mg/L CN concentration, 92.2% decyanidation capacity was obtained within 45 min for FePNCp-PVBC while 65.83% was obtained for the unfunctionalized ePVBC. The obvious improvement recorded by FePNCp-PVBC for the entrapment of CN ions could be attributed to the coordinative interaction between the ferrocenyl molecule and the cyanide ligand. By comparing with similar nanofiber materials, this new FePNCp-PVBC gave higher performance efficiency and thus could serve as a better alternative to cyanide detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Alfonso M, Tárraga A, Molina P (2010) Ferrocene-based multichannel molecular chemosensors with high selectivity and sensitivity for pb(ii) and hg(ii) metal cations. Dalt Trans 39:8637–8645. https://doi.org/10.1039/c0dt00450b

    Article  CAS  Google Scholar 

  2. An M, Kim S, Hong JD (2010) Synthesis and characterization of peripherally ferrocene-modified zinc phthalocyanine for dye-sensitized solar cell. Bull Korean Chem Soc 31:3272–3278. https://doi.org/10.5012/bkcs.2010.31.11.3272

    Article  CAS  Google Scholar 

  3. Astruc D (2017) Why is ferrocene so exceptional? Eur J Inorg Chem 2017:6–29. https://doi.org/10.1002/ejic.201600983

    Article  CAS  Google Scholar 

  4. Abou-Dobara MI, Omar NF, Diab MA et al (2019) Allyl rhodanine azo dye derivatives: potential antimicrobials target d-alanyl carrier protein ligase and nucleoside diphosphate kinase. J Cell Biochem 120:1667–1678. https://doi.org/10.1002/jcb.27473

    Article  CAS  PubMed  Google Scholar 

  5. El-Sonbati AZ, Diab MA, Morgan SM et al (2020) Synthesis, characterization, theoretical and molecular docking studies of mixed-ligand complexes of Cu(II), ni(II), Co(II), mn(II), cr(III), UO2(II) and cd(II). J Mol Struct 1200:127065. https://doi.org/10.1016/j.molstruc.2019.127065

    Article  CAS  Google Scholar 

  6. Yang X, Liu H (2019) Diphenylphosphine-substituted ferrocene/silsesquioxane-based hybrid porous polymers as highly efficient adsorbents for water treatment. ACS Appl Mater Interfaces 11:26474–26482. https://doi.org/10.1021/acsami.9b07874

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Ma J, Gao C et al (2021) Electrospun nanofibers from ferrocene-containing multiblock copolymers prepared via RAFT polymerization with F127 modified precursor. J Appl Polym Sci 138:1–13. https://doi.org/10.1002/app.50984

    Article  CAS  Google Scholar 

  8. Hosseinzadeh R, Maliji F, Golchoubian H, Bekhradnia A (2019) A novel ferrocene-based calix[4]arene as an efficient optical and electrochemical sensor for highly selective fluoride recognition. ChemistrySelect 4:3914–3920. https://doi.org/10.1002/slct.201900241

    Article  CAS  Google Scholar 

  9. Floris B (2015) Ferrocene in agriculture: from agrochemicals and soil remediation to selective chemosensors. Chem Biol Technol Agric 2:1–14. https://doi.org/10.1186/s40538-015-0038-0

    Article  CAS  Google Scholar 

  10. Rabti A, Hannachi A, Maghraoui-Meherzi H, Raouafi N (2019) Ferrocene–functionalized carbon nanotubes: an adsorbent for rhodamine B. Chem Afr 2:113–122. https://doi.org/10.1007/s42250-018-00031-0

    Article  CAS  Google Scholar 

  11. Adewuyi S, Sanyaolu NO, Amolegbe SA et al (2012) Poly[β-(1→4)-2-amino-2-deoxy-D-ghicopyranose] based zero valent nickel nanocomposite for efficient reduction of nitrate in water. J Environ Sci. https://doi.org/10.1016/S1001-0742(11)60903-0

    Article  Google Scholar 

  12. Geng TM, Fang XC, Wang FQ, Zhu F (2022) Azine- and azo-based flexible covalent organic frameworks for fluorescence sensing nitro-aromatic compounds and iodine and adsorbing iodine. React Funct Polym 176:105309. https://doi.org/10.1016/j.reactfunctpolym.2022.105309

    Article  CAS  Google Scholar 

  13. Mathew ME, Ahmad I, Thomas S et al (2021) A preliminary study on the synthesis of poly(vinylbenzyl chloride) with different solvents. Sains Malaysiana 50:1767–1773. https://doi.org/10.17576/jsm-2021-5006-22

    Article  CAS  Google Scholar 

  14. Kiliclar HC, Altinkok C, Yilmaz G, Yagci Y (2021) Visible light induced step-growth polymerization by electrophilic aromatic substitution reactions. Chem Commun 57:5398–5401. https://doi.org/10.1039/d1cc01444g

    Article  CAS  Google Scholar 

  15. Huang Y, Han W, Ruan Y et al (2023) Highly efficient and easy separation of polysaccharide-based cyanide-bridged bimetallic coordination polymers for thallium removal: performance and mechanisms. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2023.109786

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yubiao L, Kun C, Renjun Z (2021) Research progress on decyanation of cyanide tailings and recovery of valuable metal resources. Conserv Util Miner Resour 41:91–101. https://doi.org/10.13779/j.cnki.issn1001-0076.2021.01.014

    Article  Google Scholar 

  17. Couture G, Améduri B (2012) Kinetics of RAFT homopolymerisation of vinylbenzyl chloride in the presence of xanthate or trithiocarbonate. Eur Polym J 48:1348–1356. https://doi.org/10.1016/j.eurpolymj.2012.03.020

    Article  CAS  Google Scholar 

  18. Ogunlaja AS, Coombes MJ, Torto N, Tshentu ZR (2014) The adsorptive extraction of oxidized sulfur-containing compounds from fuels by using molecularly imprinted chitosan materials. React Funct Polym 81:61–76. https://doi.org/10.1016/j.reactfunctpolym.2014.04.006

    Article  CAS  Google Scholar 

  19. Adewuyi S, Bisiriyu IO, Akinremi CA, Amolegbe SA (2017) Synthesis, spectroscopic, surface and catalytic reactivity of chitosan supported co(ii) and its zerovalentcobalt nanobiocomposite. J Inorg Organomet Polym Mater 27:114–121. https://doi.org/10.1007/s10904-016-0452-1

    Article  CAS  Google Scholar 

  20. Nirwan VP, Pandey S, Hey-Hawkins E, Fahmi A (2020) Hybrid 2D nanofibers based on poly(ethylene oxide)/polystyrene matrix and poly(ferrocenylphosphinoboranes) as functional agents. J Appl Polym Sci 137:1–8. https://doi.org/10.1002/app.49091

    Article  CAS  Google Scholar 

  21. Saim AK, Darteh FK, Cobbinah IJ et al (2023) Synthesis of ASB-CuO nanocomposite for efficient cyanide degradation from aqueous systems: fundamentals and potential applications to tailings water from gold operations. Hydrometallurgy 218:106059. https://doi.org/10.1016/j.hydromet.2023.106059

    Article  CAS  Google Scholar 

  22. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40. https://doi.org/10.1016/j.susmat.2016.06.002

    Article  CAS  Google Scholar 

  23. Petrovic B, Gorbounov M, Masoudi Soltani S (2021) Influence of surface modification on selective CO2 adsorption: a technical review on mechanisms and methods. Microporous Mesoporous Mater 312:110751. https://doi.org/10.1016/j.micromeso.2020.110751

    Article  CAS  Google Scholar 

  24. Osobamiro MT (2012) Determination of the concentration of total cyanide in waste water of a tobacco company in Southwestern Nigeria. J Appl Sci Environ Manag 16:61–63

    CAS  Google Scholar 

  25. Jaszczak E, Polkowska Ż, Narkowicz S, Namieśnik J (2017) Cyanides in the environment—analysis—problems and challenges. Environ Sci Pollut Res 24:15929–15948. https://doi.org/10.1007/s11356-017-9081-7

    Article  CAS  Google Scholar 

  26. Farrokhi M, Yang JK, Lee SM, Shirzad-Siboni M (2013) Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles. J Environ Heal Sci Eng 11:1. https://doi.org/10.1186/2052-336X-11-23

    Article  CAS  Google Scholar 

  27. Wei P, Zhang Y, Huang Y, Chen L (2023) Structural design of SiO2/TiO2 materials and their adsorption-photocatalytic activities and mechanism of treating cyanide wastewater. J Mol Liq 377:121519. https://doi.org/10.1016/j.molliq.2023.121519

    Article  CAS  Google Scholar 

  28. Bashir S, Hina M, Iqbal J et al (2020) Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polym (Basel) 12:1–60. https://doi.org/10.3390/polym12112702

    Article  CAS  Google Scholar 

  29. Adewuyi S, Jacob JM, Olaleye OO et al (2016) Chitosan-bound pyridinedicarboxylate ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents. Carbohydr Polym 151:1235–1239. https://doi.org/10.1016/j.carbpol.2016.06.070

    Article  CAS  PubMed  Google Scholar 

  30. Eke-emezie N, Etuk BR, Akpan OP, Chinweoke OC (2022) Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon. Appl Water Sci 12:1–12. https://doi.org/10.1007/s13201-022-01679-3

    Article  CAS  Google Scholar 

  31. Martin N, Ya V, Naddeo V et al (2021) Cyanide removal and recovery by electrochemical crystallization process. Water (Switzerland) 13:1–15. https://doi.org/10.3390/w13192704

    Article  CAS  Google Scholar 

  32. Wagholikar S, Patil Y (2022) Eliminating cyanide species from aqueous matrices: an overview on some physical-chemical and nano-based techniques. 2022 Int conf interdiscip res technol manag IRTM 2022 - Proc. https://doi.org/10.1109/IRTM54583.2022.9791810

  33. Ghosh S, Gulhane A, Sharma P et al (2023) Quantitation of free cyanide using ion exchange chromatography in Neisseria meningitidis serogroups a, C, W, Y and X conjugates used in vaccine manufacture. Biologicals 81:101664. https://doi.org/10.1016/j.biologicals.2023.101664

    Article  CAS  PubMed  Google Scholar 

  34. Shahedi A, Darban AK, Jamshidi-Zanjani A et al (2023) Simultaneous removal of cyanide and heavy metals using photoelectrocoagulation. Water. https://doi.org/10.3390/w15030581

    Article  Google Scholar 

  35. Khota W, Kaewpila C, Suwannasing R et al (2023) Ensiling cyanide residue and in vitro rumen fermentation of cassava root silage treated with cyanide-utilizing bacteria and cellulase. Fermentation 9:1–13. https://doi.org/10.3390/fermentation9020151

    Article  CAS  Google Scholar 

  36. Hayati M (2021) A fuzzy MADM Approach for selecting the best cyanide removal method from a gold mine wastewater. Res Sq Prepr. https://doi.org/10.21203/rs.3.rs-821222/v1

    Article  Google Scholar 

  37. Amaouche H, Chergui S, Halet F et al (2019) Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide catalyzed by copper oxide. Water Sci Technol 80:126–133. https://doi.org/10.2166/wst.2019.254

    Article  CAS  PubMed  Google Scholar 

  38. Ejeromedoghene O, Adewuyi S, Amolegbe SA et al (2018) Electrovalent chitosan functionalized methyl-orange/metal nanocomposites as chemosensors for toxic aqueous anions. Nano-Struct Nano-Objects. https://doi.org/10.1016/j.nanoso.2018.06.004

    Article  Google Scholar 

  39. Jordan A, Whymark KD, Sydenham J, Sneddon HF (2021) A solvent-reagent selection guide for Steglich-type esterification of carboxylic acids. Green Chem 23:6405–6413. https://doi.org/10.1039/d1gc02251b

    Article  CAS  Google Scholar 

  40. Xu F, Li H, Luo YL, Tang W (2017) Redox-responsive self-assembly micelles from poly(n-acryloylmorpholine-block-2-acryloyloxyethyl ferrocenecarboxylate) amphiphilic block copolymers as drug release carriers. ACS Appl Mater Interfaces 9:5181–5192. https://doi.org/10.1021/acsami.6b16017

    Article  CAS  PubMed  Google Scholar 

  41. Mihaescu IM, Drochioiu G (2009) Cyanide reaction with ninhydrin: the effect of pH changes and UV-vis radiation upon the analytical results. Rev Roum Chim 54:841–845

    CAS  Google Scholar 

  42. Nhung LTT, Kim IY, Yoon YS (2020) Quaternized chitosan-based anion exchange membrane composited with quaternized poly(vinylbenzyl chloride)/polysulfone blend. Polym (Basel) 12:1–16. https://doi.org/10.3390/polym12112714

    Article  CAS  Google Scholar 

  43. Peng R, Zhang W, Ran Q et al (2011) Magnetically switchable bioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles. Langmuir 27:2910–2916. https://doi.org/10.1021/la1040486

    Article  CAS  PubMed  Google Scholar 

  44. Vengatesan S, Santhi S, Sozhan G et al (2015) Novel cross-linked anion exchange membrane based on hexaminium functionalized poly(vinylbenzyl chloride). RSC Adv 5:27365–27371. https://doi.org/10.1039/c4ra16203j

    Article  CAS  Google Scholar 

  45. Lee M, Chen BY, Den W (2015) Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl Sci 5:1272–1283. https://doi.org/10.3390/app5041272

    Article  CAS  Google Scholar 

  46. Locatelli C, Leal PC, Yunes RA et al (2009) Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: the relationship between free radical generation, glutathione depletion and cell death. Chem Biol Interact 181:175–184. https://doi.org/10.1016/j.cbi.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  47. Mudabuka B, Ogunlaja AS, Tshentu ZR, Torto N (2016) Electrospun poly(vinylbenzyl chloride) nanofibres functionalised with tris-(2,2′-pyridylimidazole)iron(III): a test strip for detection of ascorbic acid and dopamine. Sens Actuators B Chem 222:598–604. https://doi.org/10.1016/j.snb.2015.08.081

    Article  CAS  Google Scholar 

  48. Kang D, Lee JS, Yoon HH et al (2022) Electrospun poly(styrene – Co – vinylbenzyl chloride – Co – acrylonitrile) nanofiber mat as an anion exchange membrane for fuel cell applications. Polym (Basel). https://doi.org/10.3390/polym14163236

    Article  Google Scholar 

  49. Adeyemi D, Mokgadi J, Darkwa J et al (2011) Electrospun nanofibers sorbents for pre-concentration of 1,1-dichloro-2,2 bis-(4-chlorophenyl)ethylene with subsequent desorption by pressurized hot water extraction. Chromatographia 73:1015–1020. https://doi.org/10.1007/s10337-011-1989-3

    Article  CAS  Google Scholar 

  50. Anan NA, Hassan SM, Saad EM et al (2011) Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidenechitosan Schiff-base complexes of Fe(III), Co(II), ni(II), Cu(II), zn(II), Ru(III), rh(III), pd(II) and au(III). Carbohydr Res 346:775–793. https://doi.org/10.1016/j.carres.2011.01.014

    Article  CAS  PubMed  Google Scholar 

  51. Akinremi CA, Omosun NN, Adewuyi S et al (2016) Preparation and characterization of chitosan-humic acid-zerovalent iron nanocomposite for nitrate reduction in water. J Appl Chem 2016:1–8. https://doi.org/10.1155/2016/1895854

    Article  CAS  Google Scholar 

  52. Liu X, Zhao X, xin, Liu Y, Zhang T, (2022) An review on preparationd adsorption properties of chitosand chitosan composites. Springer, Berlin, Heidelberg

    Google Scholar 

  53. Li Y, Zhang H, Jiang Y et al (2019) Assembly of metallophthalocyanine-polyoxometalate hybrid for highly efficient desulfurization of organic and inorganic sulfur under aerobic conditions. Fuel 241:861–869. https://doi.org/10.1016/j.fuel.2018.12.091

    Article  CAS  Google Scholar 

  54. Olaoye R, Afolayan O, Mustapha O, Adeleke H (2018) The efficacy of banana peel activated carbon in the removal of cyanide and selected metals from Cassava processing wastewater. Adv Res 16:1–12. https://doi.org/10.9734/air/2018/43070

    Article  Google Scholar 

  55. Rasoulzadeh H, Sheikhmohammadi A, Abtahi M et al (2021) Predicting the capability of diatomite magnano composite boosted with polymer extracted from brown seaweeds for the adsorption of cyanide from water solutions using the response surface methodology: modelling and optimisation. Int J Environ Anal Chem 00:1–14. https://doi.org/10.1080/03067319.2021.1931160

    Article  CAS  Google Scholar 

  56. Ahmed EM, Alsanie F, Alhomrani W (2022) Cyanide removal from aqueous environment by resting cells and PTFE immobilized cells of Sphingobacterium spp. J Basic Microbiol 62:444–454. https://doi.org/10.1002/jobm.202100292

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheriff Adewuyi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesoji, A.O., Shotonwa, I.O., Ejeromedoghene, O. et al. Ester-Functionalized Ferrocene Based Polyvinylbenzyl Chloride Nanofiber as a Decyanidating Agent. Chemistry Africa 6, 2609–2619 (2023). https://doi.org/10.1007/s42250-023-00677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00677-5

Keywords

Navigation