Log in

Synthesis and characterization of ZnO/NiO nanocomposites for electrochemical sensing of p-Cresol in water

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In this study, the ZnO/NiO nanocomposite was used as a working electrode for sensing p-cresol using the electrochemical method. The ZnO/NiO nanocomposite was synthesized and subsequently subjected to a comprehensive suite of characterization techniques. These included X-ray diffraction (XRD) for crystalline structure analysis, energy-dispersive X-ray spectroscopy (EDS) and elemental map** for compositional assessment, high-resolution transmission electron microscopy (HRTEM) for morphological insights at the atomic scale, field emission scanning electron microscopy (FESEM) for surface topology and microstructural details, and X-ray photoelectron spectroscopy (XPS) for chemical state and electronic structure elucidation. The electrochemical performance of the ZnO/NiO nanocomposite-modified electrode was rigorously evaluated for p-Cresol detection. The sensor demonstrated a remarkable sensitivity with a low limit of detection (LOD) of 72 µM and a limit of quantification (LOQ) of 218 µM. The linear dynamic range of the sensor spanned from 0 to 1000 µM, indicating its suitability for varying concentrations of p-Cresol. Furthermore, the sensor's efficacy was validated through real sample analysis, showcasing its potential application in environmental monitoring and contamination assessment. Overall, the ZnO/NiO nanocomposite-based electrochemical sensor emerges as a promising tool for the sensitive and accurate detection of p-Cresol, contributing significantly to environmental surveillance and public health safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. Vieno, T. Tuhkanen, L. Kronberg, Environ. Technol. 27, 183–192 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. K.L. Kook, M.J. Rothrock, N. Lovanah, J.K. Sorrell, J.H. Loughrin, Anaerobe 16, 74–82 (2010)

    Article  Google Scholar 

  3. R.K. Singh, S. Kumar, A. Kumar, Biochem. Eng. J. 40, 293–303 (2008)

    Article  CAS  Google Scholar 

  4. Y. Wang, G. Zhu, M. Li, R. Singh, C. Marques, R. Min, B.K. Kaushik, B. Zhang, R. Jha, S. Kumar, IEEE Trans. Nanobioscience 20, 377–384 (2021)

    Article  PubMed  Google Scholar 

  5. P. Gorai, Y. Mizuno, M. Kumar, R. Jha, A.C.S. Appl, Nano Mater. 6, 12946–12956 (2023)

    Google Scholar 

  6. W.E. Gomes, A.A. Correa, T.G. Beatto, A. Etchegaray, A.B. Nogueira, R.K. Mendes, Environ. Technol. 44, 334–341 (2023)

    Article  CAS  PubMed  Google Scholar 

  7. K. Zhao, A. Veksha, L. Ge, G. Lisak, Chemosphere 269, 128699 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. S. Han, R. Sun, F. Teng, Y. Wang, H. Chu, W. Zong, Y. Chenb, Z. Sunb, Anal. Methods 14, 3079–3086 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. F.F.A. Aziz, A.A. Jalil, N.S. Hassan, A.A. Fauzi, N.F. Khusnun, M.W. Ali, M.B. Bahari, W. Nabgan, Environ. Res. 220, 115151 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. V.K. Jaiswal, A.D. Gupta, V. Verma, R.S. Singh, Bioresour. Technol. 387, 129706 (2023)

    Article  Google Scholar 

  11. B. Wu, Y. Chen, M. Liu, Y. Tang, G. Zheng, L. Qian, Mol. Catal. 553, 113790 (2024)

    Article  CAS  Google Scholar 

  12. S.P. Usha, B.D. Gupta, Biosens. Bioelectron. 101, 135–145 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. S. Khan, U. Valiyaneerilakkal, S. Kumar, A. Singh, A. Ahmed, H.C.S. Perera, R. Mahadeva, J. Alawatugoda, S. Arya, Microchem. J. 200, 110474 (2024)

    Article  CAS  Google Scholar 

  14. E. Fazio, S. Spadaro, C. Corsaro, G. Neri, S.G. Leonardi, F. Neri, N. Lavanya, C. Sekar, N. Donato, G. Neri, Sensors 21, 2494 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Chaudhary, A. Umar, K.K. Bhasin, S. Baskoutas, Materials 11, 287 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. N.P. Shetti, S.D. Bukkitgara, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Biosens. Bioelectron. 141, 1114 (2019)

    Article  Google Scholar 

  17. J. Zhao, D. Wu, J. Zhi, Bioelectrochemistry 75, 44–49 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. S. Moussaoui, F. Smaili, S.E. Berrabah, A. Manseri, Inorg. Chem. Commun. 158, 111563 (2023)

    Article  CAS  Google Scholar 

  19. R. Soomro, Z.H. Ali, M.I. Ibupoto, M. Abro, Willander. Sens. Actuators B Chem. 209, 966–974 (2015)

    Article  CAS  Google Scholar 

  20. S. Salmanpour, M.A. Khalilzadeh, H.K. Maleh, D. Zareyeea, Int. J. Electrochem. Sci. 14, 9552–9561 (2019)

    Article  CAS  Google Scholar 

  21. S.K. Shukla, A. Tiwari, G.K. Parashar. A.P. Mishra, G.C. Dubey, Talanta 80, 565–571 (2009)

  22. H. Qiao, Z. Wei, H. Yang, L. Zhu, X. Yan, J. Nanomater. 479, 1–5 (2009)

    Article  Google Scholar 

  23. N. Li, Y. Tian, J. Zhao, J. Zhang, L. Kong, J. Zhang, W. Zuo, J. Membrane Sci. 548, 470–480 (2018)

    Article  CAS  Google Scholar 

  24. M.M. Natile, A. Glisenti, Chem. Mater. 14, 4895–4903 (2002)

    Article  CAS  Google Scholar 

  25. J.H. Zheng, R.M. Zhang, X.G. Wang, P.F. Yu, Res. Chem. Intermed. 44, 5569–5582 (2018)

    Article  CAS  Google Scholar 

  26. B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, X. Ye, Biosens. Bioelectron. 43, 131–136 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. S. Han, R. Sun, F. Teng, Y. Wang, H. Chu, W. Zong, Y. Chen, Z. Sun, Anal. Methods 14, 3079–3086 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. D.B. Lefranc, M. Eyraud, O. Schaf, C. R. Chim. 11, 1063–1073 (2008)

    Article  Google Scholar 

  29. S. Zhang, Russ. J. Electrochem. 47, 1257–1261 (2011)

    Article  Google Scholar 

  30. L. Fotouhi, M. Ganjavi, D. Nematollahi, Sensors 4, 170–180 (2004)

    Article  CAS  PubMed Central  Google Scholar 

  31. N. Sudhan, C. Manikkaraja, V. Balasubramanian, G. Archunan, C. Sekar, Biochem. Eng. J. 126, 78–85 (2017)

    Article  CAS  Google Scholar 

  32. M.M. Lounasvuori, D. Kelly, J.S. Foord, Carbon 129, 252–257 (2018)

    Article  CAS  Google Scholar 

  33. P. Sundaresan, C.H. Lee, C.C. Fu, S.H. Liu, R.S. Juang, Microchem. J. 166, 106239 (2021)

    Article  CAS  Google Scholar 

  34. J.C. Harper, S.M. Brozik, J.H. Flemming, J.L. McClain, R. Polsky, D. Raj, G.A. Ten Eyck, D.R. Wheeler, K.E. Achyuthan, A.C.S. Appl, Mater. Interfaces 1, 1591–1598 (2009)

    Article  CAS  Google Scholar 

  35. M. Govindhan, T. Lafleur, B.R. Adhikari, A. Chen, Electroanalysis 27, 902–909 (2015)

    Article  CAS  Google Scholar 

  36. F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, C. Wang, Anal. Chim. Acta 724, 40–46 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. S. Kumar, Z. Wang, W. Zhang, X. Liu, M. Li, G. Li, B. Zhang, R. Singh, Biosensors 13, 85 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P.A. Kadam, K.M. Gadve, V.S. Kadam, C.V. Jagtap, ES Energy Environ. 21, 946 (2023)

    CAS  Google Scholar 

  39. A. Singh, A. Sharma, S. Arya, IEEE Sens. J. 23, 22153–22160 (2023)

    Article  CAS  Google Scholar 

  40. G.A. Messina, M. Regiart, S.V. Pereira, F.A. Bertolino, P.R. Aranda, J. Raba, M.A. Fernández-Baldo, in Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences, eds. by R. Prasad, T. Karchiyappan (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-02381-2_9

Download references

Funding

Funding information is not applicable / No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and experiment. Material preparation, experiment and analysis were performed by all the authors. The first draft of the manuscript was written by principal author and corresponding author and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Sandeep Arya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Singh, A., Dubey, A. et al. Synthesis and characterization of ZnO/NiO nanocomposites for electrochemical sensing of p-Cresol in water. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00729-7

Keywords

Navigation