Log in

Regulation of Ti(C,N) deposition on hot surface of refractory in blast furnace hearth

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Ti(C,N) concentration was found to be lower on the hearth sidewall of a blast furnace and increased gradually toward the bottom of the blast furnace. The Ti(C,N) protective layer in a blast furnace is thin. Therefore, the formation of a Ti(C,N) protective layer was promoted by studying the heterogeneous nucleation principle of titanium compounds on different substances and regulation measures for the deposition process of titanium compounds on refractories or impurities. The lattice disregistry between the titanium compounds and the main components in the refractory or the main impurities in the protective layer was calculated using a two-dimensional disregistry equation to study the heterogeneous nucleation principle of titanium compounds. The results revealed that in refractory materials, the heterogeneous nucleation of carbonitride is weak when C, SiO2, and Al2O3 are used as heterogeneous nucleation substrates, and the heterogeneous nucleation of carbonitride is strong when TiO2 and SiC are used as heterogeneous nucleation substrates. As nucleation phases, TiC, TiN, Ti(C0.3,N0.7), and Ti(C0.5,N0.5) have similar heterogeneous nucleation ability in single component refractory, and the type of carbonitride has little effect on the lattice disregistry. The impurities in the protective layer as the substrate phases are not conducive to the heterogeneous nucleation of carbonitride. When CaS was used as the substrate phase, the heterogeneous nucleation ability of carbonitride was the worst. Both carbon and alumina were not conducive to the heterogeneous nucleation of carbonitride, but carbon was more unfavourable than alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.Z. Xu, J.L. Zhang, Z.S. Li, Y.A. Zhao, ISIJ Int. 59 (2019) 1933–1939.

    Article  Google Scholar 

  2. K. Gao, K.X. Jiao, J.L. Zhang, L. Zhang, C. Wang, W.M. Gong, J.X. Zheng, H.B. Zhang, ISIJ Int. 60 (2020) 2385–2391.

    Article  Google Scholar 

  3. Y. Deng, J.L. Zhang, K.X. Jiao, ISIJ Int. 58 (2018) 1198–1203.

    Article  Google Scholar 

  4. S.J. Nam, Y.B. Kang, S.M. Jung, Y. Sasaki, ISIJ Int. 53 (2013) 1779-1785.

    Article  Google Scholar 

  5. D. Fünders, H. Harmuth, J. Pötschke, in: 14th Biennial Worldwide Congress (Eds.), UNITECR 2015, Wien, Austria, 2015, pp. 63.

  6. K.X. Jiao, J.L. Zhang, Z.J. Liu, L.S. Liang, T.J. Yang, X.J. Ning, in: AISTech 2015 Proceedings, Cleveland OH, USA, 2015, pp. 878–887.

    Google Scholar 

  7. K.X. Jiao, J.L. Zhang, Z.J. Liu, M. Xu, F. Liu, Int. J. Miner. Metall. Mater. 22 (2015) 1017–1024.

    Article  Google Scholar 

  8. K.X. Jiao, C.L. Chen, J.L. Zhang, Z.J. Liu, G.W. Wang, W.P. Wang, Q.J. Shao, Can. Metall. Quart. 57 (2018) 274–282.

    Article  Google Scholar 

  9. Y.Z. Wang, J.L. Zhang, Z.J. Liu, C.B. Du, JOM 69 (2017) 2397–2403.

    Article  Google Scholar 

  10. C. Wang, K.X. Jiao, J.L. Zhang, S.R. Wu, ISIJ Int. 61 (2021) 138–145.

    Article  Google Scholar 

  11. Y.Q. Li, R.J. Fruehan, Iron and Steel 38 (2003) No. 2, 58–61.

    Google Scholar 

  12. Y. Morizane, B. Ozturk, R.J. Fruehan, Metall. Mater. Trans. B 30 (1999) 29–43.

    Article  Google Scholar 

  13. K.X. Jiao, J.L. Zhang, Z.J. Liu, S.B. Kuang, Y.X. Liu, ISIJ Int. 57 (2017) 48–54.

    Article  Google Scholar 

  14. L. Chen, C.R. Li, Y.Q. Zhai, J. Wang, Z.S. Li, Z.L. Liu, Journal of Guizhou University (Natural Sciences) 38 (2021) No. 5, 40–43+124.

  15. D. Turnbull, B. Vonnegut, Ind. Eng. Chem. 44 (1952) 1292–1298.

    Article  Google Scholar 

  16. B.L. Bramfitt, Metall. Trans. 1 (1970) 2958.

    Article  Google Scholar 

  17. P. Wang, C.R. Li, R. Liu, S. Shi, Journal of the Chinese Society of Rare Earths 36 (2018) 314–318.

    Google Scholar 

  18. N. Pan, B. Song, Q.J. Zhai, B. Wen, in: 2010 National Metallurgical Physical Chemistry Conference Album (I), Editorial Committee of Journal of the Chinese Rare Earth Society, Ma’anshan, China, 2010, pp. 137–142.

  19. C. Wang, J. Cao, J.L. Zhang, Z.Y. Guo, K.X. Jiao, Y.A. Zhao, Metall. Res. Technol. 120 (2023) 216.

    Google Scholar 

  20. J. Cao, C. Wang, J.L. Zhang, Z.Y. Guo, K.X. Jiao, X.T. Yang, J. Xu, G.H. Zhang, Steel Res. Int. (2023) https://doi.org/10.1002/srin.202300168.

  21. X.Y. Fan, K.X. Jiao, J.L. Zhang, R.Q. Cao, R.S. He, K.D. Wang, Ceram. Int. 45 (2019) 13903–13911.

    Article  Google Scholar 

  22. C.K. Ji, J.L. Zhang, Z.P. Zou, C. Wang, Q. Niu, K.X. Jiao, Z.Y. Wang, Ironmak. Steelmak. 50 (2023) 1065–1074.

  23. Z. Jiang, T.Y. Guo, D.C. Hu, M.H. **e, B.N. Liu, S. Yao, Metall. Res. Technol. 120 (2023) 213.

    Google Scholar 

  24. M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, R.J. Nightingale, Metall. Mater. Trans. 42 (2011) 642–651.

    Article  Google Scholar 

  25. A.N. Christensen, A.C. Scandinavica, Physical and Inorganic Chemistry 32 (1978) 89–90.

    Google Scholar 

  26. C.R. Houska, J. Phys. Chem. Solids 25 (1964) 359–366.

    Article  Google Scholar 

  27. K.X. Jiao, Study on formation mechanism of multiple system of blast furnace hearth protective layer, University of Science and Technology Bei**g, Bei**g, China, 2015.

  28. L.W. Finger, R.M. Hazen, J. Appl. Phys. 49 (1978) 5823–5826.

    Article  Google Scholar 

  29. A.F. Wright, A.J. Leadbetter, Philos. Mag. 31 (1975) 1391–1401.

    Article  Google Scholar 

  30. S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 55 (1971) 3206–3211.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52204334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Wang, C., Zhang, Jl. et al. Regulation of Ti(C,N) deposition on hot surface of refractory in blast furnace hearth. J. Iron Steel Res. Int. 31, 1423–1435 (2024). https://doi.org/10.1007/s42243-023-01103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01103-3

Keywords

Navigation