Log in

Phase equilibria in Ti-rich portion and thermodynamic re-optimization of Co–Ti system

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The experimental and thermodynamic studies of the Co–Ti system are an important part of the project to build a thermodynamic database for multicomponent Co–Ti-based alloys. Several key alloys were prepared and then examined for microstructural, compositional and thermal analyses to determine the Ti-rich phase equilibria. According to the available experimental information, the Co–Ti system was thermodynamically re-optimized on the basis of CALPHAD method. Four disordered solutions, liquid, fcc-A1 (α-Co), bcc-A2 (β-Ti) and hcp-A3 (ε-Co and α-Ti) were modeled as substitutional ones. CoTi2 with limited solubility was treated as a stoichiometric compound, while γ-Co2Ti and β-Co2Ti with certain solubility were described in the form of (Co,Ti)2(Co,Ti)1 using a two-sublattice model. A single Gibbs energy function was employed to model two order–disorder transformations from fcc-A1 to fcc-L12 (Co3Ti) and from bcc-A2 to bcc-B2 (CoTi). A group of self-consistent thermodynamic parameters of the Co–Ti system were obtained. With these thermodynamic parameters, the experimental data can be described more reasonably and satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, Cambridge, UK, 2006.

    Book  Google Scholar 

  2. M. Yamaguchi, H. Inui, K. Ito, Acta Mater. 48 (2000) 307–322.

    Article  Google Scholar 

  3. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Science 312 (5770) 90–91.

  4. J.A. Lemberg, R.O. Ritchie, Adv. Mater. 24 (2012) 3445–3480.

    Article  Google Scholar 

  5. Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, H.Y. Yu, J. Iron Steel Res. Int. 27 (2020) 1179–1189.

    Article  Google Scholar 

  6. C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, M. Göken, Acta Mater. 135 (2017) 244–251.

    Article  Google Scholar 

  7. J.J. Ruan, X.J. Liu, S.Y. Yang, W.W. Xu, T. Omori, T. Yang, B. Deng, H.X. Jiang, C.P. Wang, R. Kainuma, K. Ishida, Intermetallics 92 (2018) 126–132.

    Article  Google Scholar 

  8. H.J. Im, S.K. Makineni, B. Gault, F. Stein, D. Raabe, P.P. Choi, Scripta Mater. 154 (2018) 159–162.

    Article  Google Scholar 

  9. L.L. Li, C.P. Wang, Y.C. Chen, S.Y. Yang, M.J. Yang, J.B. Zhang, Y. Lu, J.J. Han, X.J. Liu, Intermetallics 115 (2019) 106612.

  10. B. Yoo, H.J. Im, J.B. Seol, P.P. Choi, Intermetallics 104 (2019) 97–102.

    Article  Google Scholar 

  11. L.Y. Wu, Y.P. Zeng, Y.F. Pan, Y. Du, Y.B. Peng, H. Li, S.H. Liu, L.G. Zhang, L.B. Liu, J. Chem. Thermodyn. 142 (2020) 105995.

  12. F. Stein, M. Merali, P. Watermeyer, Calphad 67 (2019) 101681.

  13. W. Kroll, Z. Metallkd. 29 (1937) 189–192.

    Google Scholar 

  14. A.D. McQuillan, J. Inst. Met. 80 (1952) 363–368.

    Google Scholar 

  15. F.L. Orrell, M.G. Fontana, Trans. AIME 47 (1955) 554–564.

    Google Scholar 

  16. H.P. Stüwe, Y. Shimomura, Z. Metallkd. 51 (1960) 180–181.

    Google Scholar 

  17. H. Kaneko, Y.C. Huang, J. Japan Inst. Met. 27 (1963) 393–397.

    Article  Google Scholar 

  18. A. Iannucci, A.A. Johnson, E.J. Hughes, P.W. Barton, J. Appl. Phys. 39 (1968) 2222–2224.

    Article  Google Scholar 

  19. V.V. Pet'kov, M.V. Kireev, Metallofizika 33 (1971) 107–115.

    Google Scholar 

  20. P.J.M. van der Straten, G.F. Bastin, F.J.J. van Loo, G.D. Rieck, Z. Metallkd. 67 (1976) 152–157.

    Google Scholar 

  21. T. Takayama, M.Y. Wey, T. Nishizawa, Trans. Japan Inst. Met. 22 (1981) 315–325.

    Article  Google Scholar 

  22. J.L. Murray, Bull. Alloy Phase Diag. 3 (1982) 74–85.

    Article  Google Scholar 

  23. A.V. Davydov, U.R. Kattner, D. Josell, J.E. Blendell, R.M. Waterstart, A.J. Shapiro, W.J. Boettinger, Metall. Mater. Trans. A 32 (2001) 2175–2186.

    Article  Google Scholar 

  24. Y. Ueda, T. Nishi, T. Oishi, K. Ono, J. Japan Inst. Met. 50 (1986) 1081–1088.

    Article  Google Scholar 

  25. Y.O. Esin, M.G. Valishev, A.F. Ermakov, P.V. Gel'd, M.S. Petrushevskii, Zh. Fiz. Khim. 55 (1981) 747–748.

    Google Scholar 

  26. H. Wang, R. Lück, B. Predel, Z. Metallkd. 83 (1992) 528–532.

    Google Scholar 

  27. L.A. Dreval, P.G. Agraval, M.A. Turchanin, Phys. Chem. Liq. 56 (2018) 674–684.

    Article  Google Scholar 

  28. J.C. Gachon, J. Hertz, Calphad 7 (1983) 1–12.

    Article  Google Scholar 

  29. P.A. Gomozov, Y.V. Zasypalov, B.M. Mogutnov, Zh. Fiz. Khim. 60 (1986) 1865–1867.

    Google Scholar 

  30. M. Balarin, K. Bartsch, Z. Anorg. Allg. Chem. 622 (1996) 919–921.

    Article  Google Scholar 

  31. Q. Guo, O.J. Kleppa, J. Alloy. Compd. 269 (1998) 181–186.

    Article  Google Scholar 

  32. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65 (2013) 1501–1509.

    Article  Google Scholar 

  33. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, NPJ Comput. Mater. 1 (2015) 15010.

    Google Scholar 

  34. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1 (2013) 011002.

  35. L. Kaufman, H. Nesor, Metall. Trans. A 6 (1975) 2115–2122.

    Article  Google Scholar 

  36. B. Uhrenius, K. Forsén, Z. Metallkd. 74 (1983) 610–615.

    Google Scholar 

  37. P. Nash, H. Choo, R.B. Schwarz, J. Mater. Sci. 33 (1998) 4929–4936.

    Article  Google Scholar 

  38. G. Cacciamani, R. Ferro, I. Ansara, N. Dupin, Intermetallics 8 (2000) 213–222.

    Article  Google Scholar 

  39. C.Y. Zhou, C.P. Guo, C.R. Li, Z.M. Du, Calphad 63 (2018) 61–76.

    Article  Google Scholar 

  40. A.T. Dinsdale, SGTE Pure Elements (Unary) Database Version 5.1, 2010.

  41. J. Liu, C.Y. Zhou, H. Wang, Calphad 72 (2021) 102239.

  42. O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345–348.

    Article  Google Scholar 

  43. M. Hillert, M. Jarl, Calphad 2 (1978) 227–238.

    Article  Google Scholar 

  44. I. Ansara, N. Dupin, H.L. Lukas, B. Sundman, J. Alloy. Compd. 247 (1997) 20–30.

    Article  Google Scholar 

  45. N. Dupin, I. Ansara, B. Sundman, Calphad 25 (2001) 279–298.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Starting Foundation for Advanced Talents of Jiangxi University of Science and Technology (Grant No. 205200100063) and Open Foundation of Jiangxi Advanced Copper Industry Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-yang Zhou or Bin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hk., Zhou, Cy., Wang, H. et al. Phase equilibria in Ti-rich portion and thermodynamic re-optimization of Co–Ti system. J. Iron Steel Res. Int. 29, 914–924 (2022). https://doi.org/10.1007/s42243-021-00736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00736-6

Keywords

Navigation