Log in

Microstructure evolution and mechanical properties of PESR 55Cr17Mo1VN plastic die steel during quenching and tempering treatment

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

55Cr17Mo1VN high nitrogen martensitic stainless steel is usually applied to the high-quality mold, which is largely produced by the pressurized electro slag remelting process. The microstructure evolution of quenching and tempering heat treatment were investigated and an optimal heat treatment process to achieve excellent mechanical properties was found out. The main precipitates in the steel included carbon-rich type M23C6 and nitrogen-rich type M2N. With increasing austenitizing temperature, the equivalent diameter of the precipitates got fined, and retained austenite content increased significantly when the austenitizing temperature exceeded 1020 °C. The fracture mode gradually changed from brittle fracture to ductile fracture with increasing tempering temperature from 200 to 550 °C. The experimental steel tempered at 350 °C achieved a good combination of hardness (60.6 HRC) and strength (2299.2 MPa) to meet service requirements. Flake M23C6 precipitated along martensite lath boundaries and the secondary hardening phenomenon occurred when the tempering temperature was 450 °C. Due to the high nitrogen content, M2N precipitated from the inside of laths and matrix when tempered at 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.S.E. Schneider, R.A. Mesquita, Int. Heat Treat. Surf. Eng. 5 (2011) 94–100.

    Article  Google Scholar 

  2. R. Schneider, J. Perko, G. Reithofer, Mater. Manuf. Process. 24 (2009) 903–908.

    Article  Google Scholar 

  3. W.J. Tong, W.M. Li, X.M. Zang, P. Wang, H.B. Li, D.J. Li, J. Iron Steel Res. Int. 28 (2021) 19–28.

    Article  Google Scholar 

  4. S.J. Li, G.G. Cheng, Y. Huang, W.X. Dai, Z.Q. Miao, J. Iron Steel Res. Int. 27 (2020) 380–391.

    Article  Google Scholar 

  5. Q.T. Zhu, J. Li, C.B. Shi, W.T. Yu, Int. J. Miner. Metall. Mater. 22 (2015) 1149–1156.

    Article  Google Scholar 

  6. H.C. Zhu, Z.H. Jiang, H.B. Li, J.H. Zhu, H. Feng, S.C. Zhang, B.B. Zhang, P.B. Wang, G.H. Liu, Steel Res. Int. 88 (2017) 1600509.

    Article  Google Scholar 

  7. A. Bénéteau, P. Weisbecker, G. Geandier, E. Aeby-Gautier, B. Appolaire, Mater. Sci. Eng. A 391 (2005) 63–70.

    Article  Google Scholar 

  8. Y.S. Choi, J.G. Kim, Y.S. Park, J.Y. Park, Mater. Lett. 61 (2007) 244–247.

    Article  Google Scholar 

  9. W.J. Kaluba, T. Kaluba, R. Taillard, Scripta Mater. 41 (1999) 1289–1293.

    Article  Google Scholar 

  10. A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas, V.S.R. Murti, Mater. Des. 30 (2009) 1612–1624.

    Article  Google Scholar 

  11. Y.R. Liu, D. Ye, Q.L. Yong, J. Su, K.Y. Zhao, W. Jiang, J. Iron Steel Res. Int. 18 (2011) No. 11, 60–66.

    Article  Google Scholar 

  12. S. Yuan, X.C. Wu, Mater. Mech. Eng. 35 (2011) 61–64.

    Article  Google Scholar 

  13. X.S. Yu, C. Wu, R.X. Shi, Y.S. Yuan, Adv. Manuf. (2021). https://doi.org/10.1007/s40436-021-00352-3.

    Article  Google Scholar 

  14. L. Yao, W. Shi, in: Society of Automotive Engineers of China (SAE-China) (Eds.), Proceedings of SAE-China Congress 2016, Springer, Shanghai, China, 2017, pp. 313–325.

  15. C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527 (2010) 3442–3449.

    Article  Google Scholar 

  16. S. Li, Y. **e, X. Wu, Cryogenics 50 (2010) 89–92.

    Article  Google Scholar 

  17. X.P. Ma, L.J. Wang, B. Qin, C.M. Liu, S.V. Subramanian, Mater. Des. 34 (2012) 74–81.

    Article  Google Scholar 

  18. H. Semba, F. Abe, Energy Mater. 1 (2013) 238–244.

    Article  Google Scholar 

  19. G.X. Qiu, D.P. Zhan, L. Cao, H.S. Zhang, J. Iron Steel Res. Int. 28 (2021) 1168–1179.

    Article  Google Scholar 

  20. M.E. Mehtedi, P. Ricci, L. Drudi, S.E. Mohtadi, M. Cabibbo, S. Spigarelli, Mater. Des. 33 (2012) 136–144.

    Article  Google Scholar 

  21. D. Das, A.K. Dutta, K.K. Ray, Mater. Sci. Eng. A 527 (2010) 2182–2193.

    Article  Google Scholar 

  22. J.W. Park, H.C. Lee, S. Lee, Metall. Mater. Trans. A 30 (1999) 399–409.

    Article  Google Scholar 

  23. C.K. Kim, J.I. Park, S. Lee, Y.C. Kim, N.J. Kim, J.S. Yang, Metall. Mater. Trans. A 36 (2005) 87–97.

    Article  Google Scholar 

  24. T. Tsuchiyama, K. Inoue, K. Hyodo, D. Akama, N. Nakada, S. Takaki, T. Koyano, ISIJ Int. 59 (2019) 161–168.

    Article  Google Scholar 

  25. A.N. Isfahany, H. Saghafian, G. Borhani, J. Alloy. Compd. 509 (2011) 3931–3936.

    Article  Google Scholar 

  26. G.R. Ebrahimi, H. Keshmiri, A. Momeni, Ironmak. Steelmak. 38 (2011) 123–128.

    Article  Google Scholar 

  27. G. Krauss, Mater. Sci. Eng. A 273–275 (1999) 40–57.

    Article  Google Scholar 

  28. D.M. Lal, S. Renganarayanan, A. Kalanidhi, Cryogenics 41 (2001) 149–155.

    Article  Google Scholar 

  29. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Y.N. Petrov, Y.V. Tarusin, Acta Mater. 61 (2013) 1705–1715.

    Article  Google Scholar 

  30. C. Pandey, N. Saini, M.M. Mahapatra, P. Kumar, Eng. Failure Anal. 71 (2017) 131–147.

    Article  Google Scholar 

  31. H. Nakagawa, T. Miyazaki, J. Mater. Sci. 34 (1999) 3901–3908.

    Article  Google Scholar 

  32. K. Chen, Z. Jiang, F. Liu, H. Li, C. Kang, W. Zhang, A. Wang, Metall. Mater. Trans. A 51 (2020) 3565–3575.

    Article  Google Scholar 

  33. Y. Han, H. Li, H. Feng, Y. Tian, Z. Jiang, T. He, Mater. Sci. Eng. A 814 (2021) 141235.

    Article  Google Scholar 

  34. Y. Han, H. Li, H. Feng, K. Li, Y. Tian, Z. Jiang, J. Mater. Sci. Technol. 65 (2021) 210–215.

    Article  Google Scholar 

  35. X.P. Ma, L.J. Wang, B. Qin, C.M. Liu, S.V. Subramanian, Adv. Mater. Res. 311–313 (2011) 910–915.

    Article  Google Scholar 

  36. J. Dai, H. Feng, H.B. Li, Z.H. Jiang, H. Li, S.C. Zhang, P. Zhou, T. Zhang, Corros. Sci. 174 (2020) 108792.

    Article  Google Scholar 

  37. H. Feng, H.B. Li, W.C. Jiao, Z.H. Jiang, M.H. Cai, H.C. Zhu, Z.G. Chen, Metall. Mater. Trans. A 50 (2019) 4987–4999.

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (Grant Nos. U1960203, U1908223, and 51774074), Talent Project of Revitalizing Liaoning (Grant No. XLYC1902046), State Key Laboratory of Metal Material for Marine Equipment and Application (Grant No. HG-SKL (2019) 13) and the "Innovation & Entrepreneurship Talents” Introduction Plan of Jiangsu Province in 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-bing Li or Zhou-hua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Cp., Liu, Fb., Zheng, Hb. et al. Microstructure evolution and mechanical properties of PESR 55Cr17Mo1VN plastic die steel during quenching and tempering treatment. J. Iron Steel Res. Int. 28, 1625–1633 (2021). https://doi.org/10.1007/s42243-021-00689-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00689-w

Keywords

Navigation