Log in

CFD-PBM simulation of bubble coalescence and breakup in top blown-rotary agitated reactor

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Gas–liquid flow and bubble coalescence and breakup behavior were studied in a top blown-rotary agitated reactor for steelmaking. Several important models of bubble coalescence and breakup mechanisms were considered and compared, and water model experiment was carried out to verify and optimize the mathematical models. The influence of different operating parameters including paddle arrangement, stirring speed and top blowing flow rate on the bubble size and distribution was revealed. The results show that the predicted bubble size and distribution present a good agreement with the experimental results using the improved Luo–Laakkonen combination model. As the position of the stirring paddle moves from the center to the side wall, the bubble distribution in the reactor becomes more uniform, and the bubble size gradually decreases. With the increase in the paddle rotation speed, the bubble size decreases. However, this effect begins to weaken when the paddle rotation speed exceeds 150 r/min. Increasing the top blowing flow rate will increase the bubble size in the reactor, but it has a weak effect on bubble dispersion. When the top blowing rate exceeds 2.0 m3/h, the bubble size in the bath is basically not less than 5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. He, N. Wang, M. Chen, M. Chen, C. Li, Powder Technol. 361 (2020) 455–461.

    Article  Google Scholar 

  2. J.H. Ji, R.Q. Liang, J.C. He, ISIJ Int. 56 (2016) 794–802.

    Article  Google Scholar 

  3. T. Tanaka, Y. Ogiso, M. Ueda, J. Lee, ISIJ Int. 50 (2010) 1071–1077.

    Article  Google Scholar 

  4. K. Takahashi, K. Utagawa, H. Shibata, S.Y. Kitamura, N. Kikuchi, Y. Kishimoto, ISIJ Int. 52 (2012) 10–17.

    Article  Google Scholar 

  5. Y. Nakai, I. Sumi, H. Matsuno, N. Kikuchi, Y. Kishimoto, ISIJ Int. 50 (2010) 403–410.

    Article  Google Scholar 

  6. A. Aoyagi, Z. Mukuda, S. Takada, S. Oomiya, CAMP-ISIJ 7 (1994) 221.

    Google Scholar 

  7. X. Wang, S.G. Zheng, M.Y. Zhu, Ironmak. Steelmak. 47 (2020) 915–924.

    Article  Google Scholar 

  8. Y. Hiraga, K. Gennai, Y. Nakasima, J. Harama, CAMP-ISIJ 9 (1996) 225.

    Google Scholar 

  9. H.J. Visser, R. Boom, ISIJ Int. 46 (2006) 1771–1777.

    Article  Google Scholar 

  10. J. Yang, K. Okumura, M. Kuwabara, M. Sano, Metall. Mater. Trans. B 34 (2003) 619–629.

    Article  Google Scholar 

  11. W. Wu, W. Wu, Y.B. Hu, L. Liu, Y.L. Ding, J. Iron Steel Res. Int. 15 (2008) No. 1, 15–18.

    Article  Google Scholar 

  12. Y. Liu, M. Sano, T. Zhang, Q. Wang, J. He, ISIJ Int. 49 (2009) 17–23.

    Article  Google Scholar 

  13. D. Cao, X.F. Wan, L. Zhao, G.B. Li, X.G. Zhang, X.W. Liao, Angang Technology (2018) No. 6, 16–20.

    Google Scholar 

  14. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, ISIJ Int. 60 (2020) 915–921.

    Article  Google Scholar 

  15. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, J. Iron Steel Res. Int. 27 (2020) 1137–1144.

    Article  Google Scholar 

  16. P. Shao, T.A. Zhang, Z. Zhang, Y. Liu, ISIJ Int. 54 (2014) 1507–1516.

    Article  Google Scholar 

  17. J.H.. Ji, R.Q. Liang, J.C. He, ISIJ Int. 57 (2017) 453–462.

    Article  Google Scholar 

  18. X. Guan, X. Li, N. Yang, M. Liu, Chem. Eng. J. 386 (2020) 121554.

    Article  Google Scholar 

  19. H. Luo, H.F. Svendsen, AIChE J. 42 (1996) 1225–1233.

    Article  Google Scholar 

  20. M.J. Prince, H.W. Blanch, AIChE J. 36 (1990) 1485–1499.

    Article  Google Scholar 

  21. F. Lehr, M. Millies, D. Mewes, AIChE J. 48 (2002) 2426–2443.

    Article  Google Scholar 

  22. M. Laakkonen, V. Alopaeus, J. Aittamaa, Chem. Eng. Sci. 61 (2006) 218–228.

    Article  Google Scholar 

  23. T. Wang, J. Wang, Y. **, AIChE J. 52 (2006) 125–140.

    Article  Google Scholar 

  24. M. Karimi, R. Andersson, AIChE J. 65 (2019) e16600.

    Article  Google Scholar 

  25. Y. Liao, D. Lucas, Chem. Eng. Sci. 64 (2009) 3389–3406.

    Article  Google Scholar 

  26. Y. Liao, D. Lucas, Chem. Eng. Sci. 65 (2010) 2851–2864.

    Article  Google Scholar 

  27. N. Yang, Q. **ao, Chem. Eng. Sci. 170 (2017) 241–250.

    Article  Google Scholar 

  28. M. An, X. Guan, N. Yang, Chem. Eng. Sci. 223 (2020) 115743.

    Article  Google Scholar 

  29. D. Pfleger, S. Becker, Chem. Eng. Sci. 56 (2001) 1737–1747.

    Article  Google Scholar 

  30. H.F. Svendsen, H.A. Jakobsen, R. Torvik, Chem. Eng. Sci. 47 (1992) 3297–3304.

    Article  Google Scholar 

  31. W. Lou, M. Zhu, Metall. Mater. Trans. B 44 (2013) 1251–1263.

    Article  Google Scholar 

  32. P. Chu, J. Finch, G. Bournival, S. Ata, C. Hamlett, R.J. Pugh, Adv. Colloid Interface Sci. 270 (2019) 108–122.

    Article  Google Scholar 

  33. V.T. Nguyen, C.H. Song, B.U. Bae, D.J. Euh, Int. J. Multiphase Flow 54 (2013) 31–42.

    Article  Google Scholar 

  34. W. Shi, X. Yang, M. Sommerfeld, J. Yang, X. Cai, G. Li, Y. Zong, Chem. Eng. J. 371 (2019) 470–485.

    Article  Google Scholar 

  35. P. Ranganathan, S. Sivaraman, Chem. Eng. Sci. 66 (2011) 3108–3124.

    Article  Google Scholar 

  36. E.K. Nauha, Z. Kálal, J.M. Ali, V. Alopaeus, Chem. Eng. J. 334 (2018) 2319–2334.

    Article  Google Scholar 

  37. Z. Liu, F. Qi, B. Li, M. Jiang, Metall. Mater. Trans. B 46 (2015) 933–952.

    Article  Google Scholar 

  38. L. Gemello, C. Plais, F. Augier, D.L. Marchisio, Chem. Eng. J. 372 (2019) 590–604.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to the National Natural Science Foundation of China (51604147 and 51774178) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, P., Liu, Sx. & Miao, Xc. CFD-PBM simulation of bubble coalescence and breakup in top blown-rotary agitated reactor. J. Iron Steel Res. Int. 29, 223–236 (2022). https://doi.org/10.1007/s42243-021-00636-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00636-9

Keywords

Navigation