Log in

Case-based reasoning model based on attribute weights optimized by genetic algorithm for predicting end temperature of molten steel in RH

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Temperature control is the key of Ruhrstahl-Heraeus (RH) process in steelmaking plant. The accuracy of RH control model greatly affects the molten steel temperature fluctuation. To obtain RH control model with higher accuracy, an improved case-based reasoning (CBR) model based on attribute weights optimized by genetic algorithm (GA) was proposed. The fitness function in GA was determined according to the prediction accuracy of end temperature of molten steel in RH; then, GA is used to optimize all the attribute weights based on known case base. An improved CBR model that contains the optimized attribute weights was applied to predict end temperature of molten steel in RH, and the prediction accuracy was calculated. Four methods, CBR based on attribute weights optimized by GA (CBR–GA), ordinary CBR, back propagation neural network (BPNN) and multiple linear regression (MLR) method were employed for comparison. The results show that in the error range of [− 3 °C, 3 °C], [− 5 °C, 5 °C], [− 7 °C, 7 °C] and [− 10 °C, 10 °C], the prediction accuracy of CBR–GA was improved by 19.99%, 28.19%, 27.11% and 16.3%, respectively, than that of MLR. Compared with BPNN, the prediction accuracy increased by 3.22%, 7.44%, 5.29% and 2.40%, respectively. Compared with ordinary CBR, the accuracy increased by 5.43%, 5.80%, 4.66% and 2.27%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Tripathi, J.K. Saha, J.B. Singh, S.K. Ajmani, in: L. Nastac, L. Zhang, B.G. Thomas, A. Sabau, N. El-Kaddah, A.C. Powell, H. Combeau (Eds.), CFD modeling and simulation in materials processing. The Minerals, Metals, & Materials Society, 2012, pp. 295–302.

  2. T. **a, Z. He, Adv. Mater. Res. 712–715 (2013) 22–25.

    Article  Google Scholar 

  3. X. Wang, P. Yuan, Z. Mao, M. You, Knowl. Based Syst. 101 (2016) 48–59.

    Article  Google Scholar 

  4. X. Wang, M. You, Z. Mao, P. Yuan, Adv. Eng. Inform. 30 (2016) 368–375.

    Article  Google Scholar 

  5. T. Okura, I. Ahmad, M. Kano, S. Hasebe, H. Kitada, N. Murata, ISIJ Int. 53 (2013) 76–80.

    Article  Google Scholar 

  6. H. Wang, A. Xu, L. Ai, N. Tian, X. Du, ISIJ Int. 52 (2012) 80-86.

    Article  Google Scholar 

  7. W. Lv, Z. Mao, P. Yuan, Steel Res. Int. 83 (2012) 288–296.

    Article  Google Scholar 

  8. K. Feng, D. He, A. Xu, H. Wang, Steel Res. Int. 87 (2016) 79–86.

    Article  Google Scholar 

  9. I. Ahmad, M. Kano, S. Hasebe, H. Kitada, N. Murata, J. Process Control 24 (2014) 375–382.

    Article  Google Scholar 

  10. H.X. Tian, Z.Z. Mao, IEEE Trans. Aut. Sci. Eng. 7 (2010) 73–80.

    Google Scholar 

  11. Q. Li, G. Cao, J. Li, N. Wang, Appl. Mech. Mater. 48-49 (2011) 853-857.

    Google Scholar 

  12. H.B. Wang, L.X. Ai, A.J. Xu, N.Y. Tian, Z.C. Hou, Z.W. Zhou, J. Univ. Sci. Technol. Bei**g 34 (2012) 264–269.

    Google Scholar 

  13. F. He, A. Xu, H. Wang, D. He, N. Tian, Steel Res. Int. 83 (2012) 1079–1086.

    Article  Google Scholar 

  14. K. Feng, H.B. Wang, A.J. Xu, D.F. He, Int. J. Miner. Metall. Mater. 20 (2013) 1148–1154.

    Article  Google Scholar 

  15. S.W. Wu, X.G. Zhou, J.K. Ren, G.M. Cao, Z.Y. Liu, N.A. Shi, J. Iron Steel Res. Int. 25 (2018) 700–705.

    Article  Google Scholar 

  16. P.M. Ajith, T.M. Afsal Husain, P. Sathiya, S. Aravindan, J. Iron Steel Res. Int. 22 (2015) 954–960.

    Article  Google Scholar 

  17. S. Pal, C. Halder, Steel Res. Int. 88 (2017) 1600193.

    Article  Google Scholar 

  18. L. Li, Q. Tang, P. Zheng, L. Zhang, C.A. Floudas, in: E. Qi (Eds.), Proceedings of the 6th international Asia conference on industrial engineering and management innovation, Atlantis Press, Paris, France, 2016, pp. 399–410.

    Chapter  Google Scholar 

  19. S. Lin, F. Luan, Z. Han, X. Lü, X. Zhou, W. Liu, Chin. J. Chem. Eng. 22 (2014) 742–747.

    Article  Google Scholar 

  20. K. Worapradya, P. Thanakijkasem, S. Afr. J. Ind. Eng. 25 (2014) 209–221.

    Google Scholar 

  21. K. Feng, D.F. He, A.J. Xu, H.B. Wang, J. Iron Steel Res. Int. 22 (2015) 68–74.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (No. 2016YFB0601301), National Natural Science Foundation of China (No. 51574032) and Fundamental Research Funds for the Central Universities (No. FRF-TP-16-081A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, K., Xu, Aj., Wu, Pf. et al. Case-based reasoning model based on attribute weights optimized by genetic algorithm for predicting end temperature of molten steel in RH. J. Iron Steel Res. Int. 26, 585–592 (2019). https://doi.org/10.1007/s42243-019-00264-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00264-4

Keywords

Navigation