Log in

Soft, body conformable electronics for thermoregulation enabled by kirigami

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

摘要

在节约能源与保证生活质量的同时, 将热电设备 (TEDs) 应用于个性化的体温调节具有非常大的吸引力。直接贴附在皮肤上的热电设备能够显著降低因冷却整个环境而产生的能量浪费。然而, 在面对人体皮肤呈现的极端动态的几何形状和应变, 传统的热电设备无法贴合人体轮廓以达到最佳的体温调节效果。因此, 本文基于剪纸技术设计了一种具有出色的透气性、柔性和共形性的可穿戴式热电设备。数值分析和实验结果均表明, 本文开发的热电设备能够承受各种类型的大程度的机械变形, 且不会导致电路断裂。上述成果和所提出的简便方法不仅推动了可穿戴式热电设备的发展, 还为各种需要高度共形性的电子设备提供了创新机遇。

Abstract

The application of thermoelectric devices (TEDs) for personalized thermoregulation is attractive for saving energy while balancing the quality of life. TEDs that directly attach to human skin remarkably minimized the energy wasted for cooling the entire environment. However, facing the extreme dynamic geometry change and strain of human skin, conventional TEDs cannot align with the contour of our bodies for the best thermoregulation effect. Hence, we designed a kirigami-based wearable TED with excellent water vapor permeability, flexibility, and conformability. Numerical analysis and experimental results reveal that our product can withstand various types of large mechanical deformation without circuit rupture. The stated outcome and proposed facile approach not only reinforce the development of wearable TEDs but also offer an innovative opportunity for different electronics that require high conformability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Li XQ, Guo WL, Hsu PC (2023) Personal thermoregulation by moisture-engineered materials. Adv Mater 2023:2209825. https://doi.org/10.1002/adma.202209825

    Article  Google Scholar 

  2. Hong S, Gu Y, Seo JK (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaae0536. https://doi.org/10.1126/sciadv.aaw0536

    Article  Google Scholar 

  3. Smallcombe JW, Foster J, Hodder SG (2022) Quantifying the impact of heat on human physical work capacity; part IV: interactions between work duration and heat stress severity. Int J Biometeorol 66:2463–2476. https://doi.org/10.1007/s00484-022-02370-7

    Article  Google Scholar 

  4. Osilla EV, Marsidi JL, Shumway KR (2023) Physiology Temperature Regulation. StatPearls Publishing, Treasure Island, USA

    Google Scholar 

  5. Elsaid AM, Mohamed HA, Abdelaziz GB et al (2021) A critical review of heating, ventilation, and air conditioning (HVAC) systems within the context of a global SARS-CoV-2 epidemic. Process Safety Environ Protect 155:230–261. https://doi.org/10.1016/j.psep.2021.09.021

    Article  Google Scholar 

  6. Shi XL, Zou J, Chen ZG (2020) Advanced thermoelectric design: from materials and structures to devices. Chem Rev 120:7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026

    Article  Google Scholar 

  7. Veselý M, Zeiler W (2014) Personalized conditioning and its impact on thermal comfort and energy performance—a review. Renew Sust Energy Rev 34:401–408. https://doi.org/10.1016/j.rser.2014.03.024

    Article  Google Scholar 

  8. McLinden MO, Brown JS, Brignoli R et al (2017) Limited options for low-global-warming-potential refrigerants. Nat Commun 8:14476. https://doi.org/10.1038/ncomms14476

    Article  Google Scholar 

  9. Heo SY, Lee GJ, Song YM (2022) Heat-shedding with photonic structures: radiative cooling and its potential. J Mater Chem C 10:9915–9937. https://doi.org/10.1039/D2TC00318J

    Article  Google Scholar 

  10. Ernst TC, Garimella S (2013) Demonstration of a wearable cooling system for elevated ambient temperature duty personnel. Appl Therm Eng 60(1–2):316–324. https://doi.org/10.1016/j.applthermaleng.2013.06.019

    Article  Google Scholar 

  11. Li JY, Fu Y, Zhou JK et al (2023) Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci Adv 9(14):eadg1837. https://doi.org/10.1126/sciadv.adg1837

    Article  Google Scholar 

  12. Wang HM, Zhang Y, Liang XP et al (2021) Smart fibers and textiles for personal health management. ACS Nano 15(8):12497–12508. https://doi.org/10.1021/acsnano.1c06230

    Article  Google Scholar 

  13. Kang MH, Lee GJ, Lee JH et al (2021) Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv Sci 8(10):2004885. https://doi.org/10.1002/advs.202004885

    Article  Google Scholar 

  14. Byun SH, Yun JH, Heo SY et al (2022) Self-cooling gallium-based transformative electronics with a radiative cooler for reliable stiffness tuning in outdoor use. Adv Sci 9(24):2202549. https://doi.org/10.1002/advs.202202549

    Article  Google Scholar 

  15. Dou SL, Xu HB, Zhao JP et al (2021) Bioinspired microstructured materials for optical and thermal regulation. Adv Mater 33(6):2000697. https://doi.org/10.1002/adma.202000697

    Article  Google Scholar 

  16. Savage N (2009) Thermoelectric coolers. Nat Photon 3:541–542. https://doi.org/10.1038/nphoton.2009.158

    Article  Google Scholar 

  17. Minnich AJ, Dresselhaus MS, Ren ZF et al (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479. https://doi.org/10.1039/B822664B

    Article  Google Scholar 

  18. Drebushchak VA (2008) The Peltier effect. J Therm Anal Calorim 91:311–315. https://doi.org/10.1007/s10973-007-8336-9

    Article  Google Scholar 

  19. Zhang QH, Deng KF, Wilkens L et al (2022) Micro-thermoelectric devices. Nat Electron 5:333–347. https://doi.org/10.1038/s41928-022-00776-0

    Article  Google Scholar 

  20. Cao TY, Shi XL, Chen ZG (2023) Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 131:101003. https://doi.org/10.1016/j.pmatsci.2022.101003

    Article  Google Scholar 

  21. Yang SQ, Qiu PF, Chen LD et al (2021) Recent developments in flexible thermoelectric devices. Small Sci 1(7):2100005. https://doi.org/10.1002/smsc.202100005

    Article  Google Scholar 

  22. Kanahashi K, Pu J, Takenobu T (2020) 2D materials for large-area flexible thermoelectric devices. Adv Energy Mater 10(11):1902842. https://doi.org/10.1002/aenm.201902842

    Article  Google Scholar 

  23. Wei HX, Zhang J, Han Y et al (2022) Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling. Appl Energy 326:119941. https://doi.org/10.1016/j.apenergy.2022.119941

    Article  Google Scholar 

  24. Liu Y, Zhuo FL, Zhou J et al (2022) Machine-learning assisted handwriting recognition using graphene oxide-based hydrogel. ACS Appl Mater Interfaces 14(18):54276–54286. https://doi.org/10.1021/acsami.2c17943

    Article  Google Scholar 

  25. Yu SZ, Hou YC, ** QJ et al (2023) Biomimetic chlorophyll derivatives-based photocatalytic fabric for highly efficient O2 production via CO2 and H2O photoreaction. Chem Eng J 472:145103. https://doi.org/10.1016/j.cej.2023.145103

    Article  Google Scholar 

  26. Bang KM, Park W, Ziolkowski P et al (2021) Fabrication and cooling performance optimization of stretchable thermoelectric cooling device. ACS Appl Electron Mater 3(12):5433–5442. https://doi.org/10.1021/acsaelm.1c00886

    Article  Google Scholar 

  27. Choi J, Dun CC, Forsythe C et al (2021) Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer. J Mater Chem A 9(28):15696–15703. https://doi.org/10.1039/D1TA01911B

    Article  Google Scholar 

  28. Zhang Y, Gao J, Zhu SJ et al (2022) Wearable thermoelectric cooler based on a two-layer hydrogel/nickel foam heatsink with two-axis flexibility. ACS Appl Mater Interfaces 14(13):15317–15323. https://doi.org/10.1021/acsami.2c01777

    Article  Google Scholar 

  29. Sugahara T, Ekubaru Y, Nong NV et al (2019) Fabrication with semiconductor packaging technologies and characterization of a large-scale flexible thermoelectric module. Adv Mater Technol 4(2):1800556. https://doi.org/10.1002/admt.201800556

    Article  Google Scholar 

  30. Yang Y, Hu HJ, Chen ZY et al (2020) Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett 20(6):4445–4453. https://doi.org/10.1021/acs.nanolett.0c01225

    Article  Google Scholar 

  31. Sato Y, Terashima S, Iwase E (2023) Origami-type flexible thermoelectric generator fabricated by self-folding. Micromachines 14(1):218. https://doi.org/10.3390/mi14010218

    Article  Google Scholar 

  32. Rösch AG, Gall A, Aslan S et al (2021) Fully printed origami thermoelectric generators for energy-harvesting. npj Flex Electron 5:1. https://doi.org/10.1038/s41528-020-00098-1

    Article  Google Scholar 

  33. Rafsanjani A, Bertoldi K (2017) Buckling-induced kirigami. Phys Rev Lett 118:084301. https://doi.org/10.1103/PhysRevLett.118.084301

    Article  Google Scholar 

  34. Blees MK, Barnard AW, Rose PA et al (2015) Graphene kirigami. Nature 524:204–207. https://doi.org/10.1038/nature14588

    Article  Google Scholar 

  35. Lamoureux A, Lee K, Shlian M et al (2015) Dynamic kirigami structures for integrated solar tracking. Nat Commun 6:8092. https://doi.org/10.1038/ncomms9092

    Article  Google Scholar 

  36. Wu CS, Wang X, Lin L et al (2016) Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10(4):4652–4659. https://doi.org/10.1021/acsnano.6b00949

    Article  Google Scholar 

  37. Kim DH, Lu N, Ma R et al (2011) Epidermal electronics. Science 333(6044):838–843. https://doi.org/10.1126/science.1206157

    Article  Google Scholar 

  38. Rogers JA, Someya T, Huang YG (2010) Materials and mechanics for stretchable electronics. Science 327(5973):1603–1607. https://doi.org/10.1126/science.1182383

    Article  Google Scholar 

  39. Webb RC, Bonifas AP, Behnaz A et al (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944. https://doi.org/10.1038/nmat3755

    Article  Google Scholar 

  40. Liu YH, Pharr M, Salvatore GA (2017) Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10):9614–9635. https://doi.org/10.1021/acsnano.7b04898

    Article  Google Scholar 

  41. Brooks AK, Chakravarty S, Ali M et al (2022) Kirigami-inspired biodesign for applications in healthcare. Adv Mater 34(18):2109550. https://doi.org/10.1002/adma.202109550

    Article  Google Scholar 

  42. Luo YF, Abidian MR, Ahn JH et al (2023) Technology roadmap for flexible sensors. ACS Nano 17:5211–5295. https://doi.org/10.1021/acsnano.2c12606

    Article  Google Scholar 

  43. Davoodi E, Montazerian H, Khademhosseini A et al (2020) Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds. Acta Biomater 117:261–272. https://doi.org/10.1016/j.actbio.2020.10.001

    Article  Google Scholar 

  44. ASTMD5169-98 (2021) Standard test method for shear strength (dynamic method) of hook and loop touch fastener. ASTM International, West Conshohocken. https://doi.org/10.1520/D5169-98R21

  45. Yang WZ, Gao ZZ, Yue ZF et al (2019) Hard-particle rotation enabled soft–hard integrated auxetic mechanical metamaterials. Proc Royal Soc A Math Phys Eng Sci 475(2228):20190234. https://doi.org/10.1098/rspa.2019.0234

    Article  MathSciNet  Google Scholar 

  46. Chow L, Yick KL, Wong KH et al (2022) 3D printing auxetic architectures for hypertrophic scar therapy. Macromol Mater Eng 307(5):2100866. https://doi.org/10.1002/mame.202100866

    Article  Google Scholar 

  47. Corrigan T, Fleming P, Eldredge C et al (2023) Strong conformable structure via tension activated kirigami. Commun Mater 4:31. https://doi.org/10.1038/s43246-023-00357-4

    Article  Google Scholar 

  48. Cho H, Seo D, Kim DN (2018) Mechanics of auxetic materials. In: Hsueh CH, Schmauder S, Chen CS et al (Eds.), Handbook of Mechanics of Materials. Springer, Singapore, p.733–757. https://doi.org/10.1007/978-981-10-6884-3_25

  49. Chen J, Jiang JH, Weber J et al (2023) Shape morphing by topological patterns and profiles in laser-cut liquid crystal elastomer kirigami. ACS Appl Mater Interfaces 15(3):4538–4548. https://doi.org/10.1021/acsami.2c20295

    Article  Google Scholar 

  50. Cheng Z, Koh YR, Mamun A et al (2020) Experimental observation of high intrinsic thermal conductivity of AlN. Phys Rev Mater 4:044602. https://doi.org/10.1103/PhysRevMaterials.4.044602

    Article  Google Scholar 

  51. Kwiecien SY, McHugh MP (2021) The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise. Eur J Appl Physiol 121:2125–2142. https://doi.org/10.1007/s00421-021-04683-8

    Article  Google Scholar 

  52. John SS, Mohanty S, Chaudhary Z et al (2020) Comparative evaluation of low level laser therapy and cryotherapy in pain control and wound healing following orthodontic tooth extraction: a double blind study. J Cranio-Maxillofacial Surg 48(3):251–260. https://doi.org/10.1016/j.jcms.2020.01.012

    Article  Google Scholar 

  53. Yang X, He SS, Wang J et al (2023) Hyaluronic acid-based injectable nanocomposite hydrogels with photo-thermal antibacterial properties for infected chronic diabetic wound healing. Int J Biol Macromol 242:124872. https://doi.org/10.1016/j.ijbiomac.2023.124872

    Article  Google Scholar 

  54. Freedman BR, Hwang C, Talbot S et al (2023) Breakthrough treatments for accelerated wound healing. Sci Adv 9:eade7007. https://doi.org/10.1126/sciadv.ade7007

    Article  Google Scholar 

  55. Sawada T, Okawara H, Nakashima D et al (2022) Effects of alternating heat and cold stimulation using a wearable thermo-device on subjective and objective shoulder stiffness. J Physiol Anthropol 41:1. https://doi.org/10.1186/s40101-021-00275-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62122002), the Project of City University of Hong Kong (Nos. 9667221, 9678274, and 9680322), as part of the InnoHK Project on Project 2.2—AI-based 3D ultrasound imaging algorithm at Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), and the Project of Research Grants Council of the Hong Kong Special Administrative Region (Nos. 11213721, 11215722, and 11211523).

Author information

Authors and Affiliations

Authors

Contributions

XGY and LC initiated the concept and proposed the project. LC developed the device and collected the overall data. GYZ and LC led and developed the laser cutting process. PCW and LC carried out the mechanical modeling of circuit design and finite element analysis. XCH, JYL, JL (Jian Li), WYW, and GHG assisted in fabrication and characterization. ZYL, JCW, JKZ, YWY, and LC organized the wear trial. LC and XGY wrote the manuscript. All authors contributed to discussing the data and commenting on the final manuscript.

Corresponding authors

Correspondence to Jian Lu or **nge Yu.

Ethics declarations

Conflict of interest

XGY is an associate editor for Bio-Design and Manufacturing and was not involved in the editorial review or the decision to publish this article. All the authors declare that they have no conflict of interest.

Ethical approval

All experiments involving human subjects were approved by the Research Committee of City University of Hong Kong, China, and conducted in compliance with the guidelines. The participants were informed and provided with written consent before taking part in the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3373 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, L., Zhao, G., Wu, P. et al. Soft, body conformable electronics for thermoregulation enabled by kirigami. Bio-des. Manuf. (2024). https://doi.org/10.1007/s42242-024-00290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42242-024-00290-6

Keywords

Navigation