Log in

Design, Testing and Control of a Magnetorheological Damper for Knee Prostheses

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This study aims to develop a magnetorheological (MR) damper for semi-active knee prostheses to restore the walking ability of transfemoral amputees. The core dimensions of the MR damper were determined via theoretical magnetic field calculations, and the theoretical relationship between current and joint torque was derived through electromagnetic simulation. Then, a physical prototype of the semi-active prosthetic knee equipped with the MR damper was manufactured. Based on the data obtained from angle sensor, pressure sensor (loadcell), and inertial measurement unit (IMU) on the prosthesis, a matching control algorithm is developed. The joint torque of the MR damper can be adaptively adjusted according to the walking speed of the amputee, allowing the amputee to realize a natural gait. The effectiveness of the control program was verified by the ADAMS and MATLAB co-simulation. The results of the test and simulation show that the MR damper can provide sufficient torque needed for normal human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. sdfwf

References

  1. Lara-Barrios, C. M., Blanco-Ortega, A., Guzmán-Valdivia, C. H., & Bustamante Valles, K. D. (2018). Literature review and current trends on transfemoral powered prosthetics. Advanced Robotics, 32(2), 51–62.

    Article  Google Scholar 

  2. Sun, Y., Tang, H., Tang, Y., Zheng, J., Dong, D., Chen, X., Liu, F., Bai, L., Ge, W., **n, L., Pu, H., Peng, Y., & Luo, J. (2021). Review of recent progress in robotic knee prosthesis related techniques: Structure, actuation and control. Journal of Bionic Engineering, 18(4), 764–785.

    Article  Google Scholar 

  3. Liang, W., Qian, Z., Chen, W., Song, H., Cao, Y., Wei, G., Ren, L., Wang, K., & Ren, L. (2022). Mechanisms and component design of prosthetic knees: A review from a biomechanical function perspective. Frontiers in Bioengineering and Biotechnology, 10, 950110.

    Article  Google Scholar 

  4. Soriano, J. F., Rodríguez, J. E., & Valencia, L. A. (2020). Performance comparison and design of an optimal polycentric knee mechanism. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 1–13.

    Article  Google Scholar 

  5. Andrysek, J., Tomasi, J., Leineweber, M., & Eshraghi, A. (2019). A new modeling method to characterize the stance control function of prosthetic knee joints. IEEE Transactions on Biomedical Engineering, 66(4), 1184–1192.

    Article  Google Scholar 

  6. Mohanty, R. K., Mohanty, R. C., & Sabut, S. K. (2020). A systematic review on design technology and application of polycentric prosthetic knee in amputee rehabilitation. Physical and Engineering Sciences in Medicine, 43(3), 781–798.

    Article  Google Scholar 

  7. Anand, T. S., & Sujatha, S. (2017). A method for performance comparison of polycentric knees and its application to the design of a knee for develo** countries. Prosthetics and Orthotics International, 41(4), 402–411.

    Article  Google Scholar 

  8. Martin, J., Pollock, A., & Hettinger, J. (2010). Microprocessor lower limb prosthetics: Review of current state of the art. JPO: Journal of Prosthetics and Orthotics, 22(3), 183–193.

    Google Scholar 

  9. Pieringer, D. S., Grimmer, M., Russold, M. F., Riener, R. (2017). Review of the actuators of active knee prostheses and their target design outputs for activities of daily living. In 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, pp. 1246–1253.

  10. Torrealba, R. R., & Fonseca-Rojas, E. D. (2019). Toward the development of knee prostheses: Review of current active devices. Applied Mechanics Reviews, 71(3), 030801.

    Article  Google Scholar 

  11. Lawson, B. E., Mitchell, J., Truex, D., Shultz, A., Ledoux, E., & Goldfarb, M. (2014). A robotic leg prosthesis: Design, control, and implementation. IEEE Robotics & Automation Magazine, 21(4), 70–81.

    Article  Google Scholar 

  12. Rouse, E. J., Mooney, L. M., & Herr, H. M. (2014). Clutchable series-elastic actuator: Implications for prosthetic knee design. The International Journal of Robotics Research, 33(13), 1611–1625.

    Article  Google Scholar 

  13. Wang, X., Zhang, Y., Liang, W., Chen, W., **u, H., Ren, L., Wei, G., & Ren, L. (2023). Design, control, and validation of a polycentric hybrid knee prosthesis. IEEE Transactions on Industrial Electronics, 70(9), 9203–9214.

    Article  Google Scholar 

  14. Wang, X., **u, H., Zhang, Y., Liang, W., Chen, W., Wei, G., Ren, L., & Ren, L. (2022). Design and validation of a polycentric hybrid knee prosthesis with electromagnet-controlled mode transition. IEEE Robotics and Automation Letters, 7(4), 10502–10509.

    Article  Google Scholar 

  15. Pfeifer, S., Pagel, A., Riener, R., & Vallery, H. (2015). Actuator with angle-dependent elasticity for biomimetic transfemoral prostheses. IEEE/ASME Transactions on Mechatronics, 20(3), 1384–1394.

    Article  Google Scholar 

  16. Lee, J. T., Bartlett, H. L., & Goldfarb, M. (2019). Design of a semipowered stance-control swing-assist transfemoral prosthesis. IEEE/ASME Transactions on Mechatronics, 25(1), 175–184.

    Article  Google Scholar 

  17. Thiele, J., Schollig, C., Bellmann, M., & Kraft, M. (2019). Designs and performance of three new microprocessor-controlled knee joints. Biomedical Engineering/Biomedizinische Technik, 64(1), 119–126.

    Google Scholar 

  18. Thiele, J., Westebbe, B., Bellmann, M., & Kraft, M. (2014). Designs and performance of microprocessor-controlled knee joints. Biomedizinische Technik/Biomedical Engineering, 59(1), 65–77.

    Article  Google Scholar 

  19. Fluit, R., Prinsen, E. C., Wang, S., & Van Der Kooij, H. (2019). A comparison of control strategies in commercial and research knee prostheses. IEEE Transactions on Biomedical Engineering, 67(1), 277–290.

    Article  Google Scholar 

  20. Johansson, J. L., Sherrill, D. M., Riley, P. O., Bonato, P., & Herr, H. (2005). A clinical comparison of variable-dam** and mechanically passive prosthetic knee devices. American Journal of Physical Medicine & Rehabilitation, 84(8), 563–575.

    Article  Google Scholar 

  21. Carlson, J. D., & Jolly, M. R. (2000). Mr fluid, foam and elastomer devices. Mechatronics, 10(4–5), 555–569.

    Article  Google Scholar 

  22. Kumari, C., & Chak, S. K. (2018). A review on magnetically assisted abrasive finishing and their critical process parameters. Manufacturing Review, 5, 13.

    Article  Google Scholar 

  23. Park, B. J., Fang, F. F., & Choi, H. J. (2010). Magnetorheology: Materials and application. Soft Matter, 6(21), 5246–5253.

    Article  Google Scholar 

  24. Ashour, O., Rogers, C. A., & Kordonsky, W. (1996). Magnetorheological fluids: Materials, characterization, and devices. Journal of Intelligent Material Systems and Structures, 7(2), 123–130.

    Article  Google Scholar 

  25. Kim, J. H., Oh, J. H. (2001). Development of an above knee prosthesis using MR damper and leg simulator. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 4, Seoul, Korea (South), pp. 3686–3691.

  26. Wilkenfeld, A., & Herr, H. (2000). An auto-adaptive external knee prosthesis. Artificial Intelligence Laboratory, MIT, pp. 1–3.

    Google Scholar 

  27. Herr, H., Wilkenfeld, A., & Blaya, J. Patient-adaptive prosthetic and orthotic leg systems. In Proceedings of the 12th Nordic Baltic Conference on Biomedical Engineering and Medical Physics, Reykjavik, Iceland, pp. 123–128.

  28. Herr, H., & Wilkenfeld, A. (2003). User-adaptive control of a magnetorheological prosthetic knee. Industrial Robot: An International Journal, 30(1), 42–55.

    Article  Google Scholar 

  29. Tucker, M. R., & Fite, K. B. Mechanical dam** with electrical regeneration for a powered transfemoral prosthesis. In 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, pp. 13–18.

  30. **e, H. L., Liang, Z. Z., Li, F., & Guo, L. X. (2010). The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. International Journal of Automation and Computing, 7(3), 277–282.

    Article  Google Scholar 

  31. Park, J., Yoon, G. H., Kang, J. W., & Choi, S. B. (2016). Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes. Smart Materials and Structures, 25(8), 085009.

    Article  Google Scholar 

  32. Gao, F., Liu, Y. N., & Liao, W. H. (2017). Optimal design of a magnetorheological damper used in smart prosthetic knees. Smart Materials and Structures, 26(3), 035034.

    Article  Google Scholar 

  33. Fu, Q., Wang, D.H., Xu, L., & Yuan, G. (2017). A magnetorheological damper-based prosthetic knee (MRPK) and sliding mode tracking control method for an mrpk-based lower limb prosthesis. Smart Materials and Structures, 26(4), 045030.

    Article  Google Scholar 

  34. Zuo, Q., Zhao, J., Mei, X., Yi, F., & Hu, G. (2021). Design and trajectory tracking control of a magnetorheological prosthetic knee joint. Applied Sciences, 11(18), 8305.

    Article  Google Scholar 

  35. Li, L., Wang, X., Meng, Q., Chen, C., Sun, J., & Yu, H. (2022). Intelligent knee prostheses: A systematic review of control strategies. Journal of Bionic Engineering, 19(5), 1242–1260.

    Article  Google Scholar 

  36. Liu, G., Gao, F., & Liao, W.-H. (2022). Design and optimization of a magnetorheological damper based on b-spline curves. Mechanical Systems and Signal Processing, 178, 109279.

    Article  Google Scholar 

  37. Imaduddin, F., Mazlan, S. A., & Zamzuri, H. (2013). A design and modelling review of rotary magnetorheological damper. Materials & Design, 51, 575–591.

    Article  Google Scholar 

  38. Zhu, X., **g, X., & Cheng, L. (2012). Magnetorheological fluid dampers: A review on structure design and analysis. Journal of Intelligent Material Systems and Structures, 23(8), 839–873.

    Article  Google Scholar 

  39. Giorgetti, A., Baldanzini, N., Biasiotto, M., & Citti, P. (2010). Design and testing of a mrf rotational damper for vehicle applications. Smart Materials and Structures, 19(6), 065006.

    Article  Google Scholar 

  40. Nguyen, Q. H., & Choi, S. B. (2008). Optimal design of a vehicle magnetorheological damper considering the dam** force and dynamic range. Smart materials and Structures, 18(1), 015013.

    Article  Google Scholar 

  41. Chen, J. Z., & Liao, W. H. (2010). Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Materials and Structures, 19(3), 035029.

    Article  Google Scholar 

  42. Lenzi, T., Cempini, M., Hargrove, L., & Kuiken, T. (2018). Design, development, and testing of a lightweight hybrid robotic knee prosthesis. The International Journal of Robotics Research, 37(8), 953–976.

    Article  Google Scholar 

  43. Martinez Villalpando, E. C. (2012). Design and evaluation of a biomimetic agonist-antagonist active knee prosthesis. Massachusetts Institute of Technology, USA, pp. 19–26.

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Key Research and Development Program of China under Grant 2018YFC2001300; in part by the National Natural Science Foundation of China under Grant 91948302, Grant 91848204, and Grant 52021003; in part by the Science and Technology Research Project of Educational Department of Jilin Province under Grant JJKH20241259KJ and the Project of Scientific and Technological Development Plan of Jilin Province under Grant 20220508130RC. We appreciate valuable comments and suggestions provided by reviewers and editors.

Funding

This study was funded by Key Technologies Research and Development Program (2018YFC2001300), the Science and Technology Research Project of Educational Department of Jilin Province (JJKH20241259KJ), the National Natural Science Foundation of China (91948302, 91848204, 52021003), the Project of Scientific and Technological Development Plan of Jilin Province (20220508130RC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Lei Ren.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Spindle magnetoresistance \(R_{1}\):

$$R_{1} = \frac{{l_{1} }}{{\mu_{1} A_{1} }} = \frac{{l_{1} }}{{\mu_{1}\uppi r_{1}^{2} }}$$
(15)

Endcap magnetoresistance \(R_{2}\):

$$R_{2} = \frac{{r_{3} - r_{1} }}{{\mu_{1} A_{2} }} = \frac{{r_{3} - r_{1} }}{{\mu_{1}\uppi (r_{3} + r_{1} )l_{3} }}$$
(16)

MR fluid magnetoresistance \(R_{3}\):

$$R_{3} = \frac{{l_{2} - 2Ne}}{{\mu_{2} A_{3} }} = \frac{{l_{2} - 2Ne}}{{\mu_{2}\uppi (r_{4}^{2} - r_{2}^{2} )}}$$
(17)

Stator disc magnetoresistance \(R_{4}\):

$$R_{4} = \frac{e}{{\mu_{1} A_{4} }} = \frac{e}{{\mu_{1}\uppi (r_{0}^{2} - r_{2}^{2} )}}$$
(18)

Rotor disc magnetoresistance \(R_{5}\):

$$R_{5} = \frac{e}{{\mu_{1} A_{5} }} = \frac{e}{{\mu_{1}\uppi (r_{4}^{2} - r_{i}^{2} )}}$$
(19)

where \(e\) is the thickness of the stator and rotor discs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Cao, Y., Chen, W. et al. Design, Testing and Control of a Magnetorheological Damper for Knee Prostheses. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00535-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00535-1

Keywords

Navigation