Log in

Design and Theoretical Research on Aerial-Aquatic Vehicles: A Review

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

With the rapid development of unmanned aerial and underwater vehicles, various tasks, such as biodiversity monitoring, surveying, and map**, as well as, search and rescue can now be completed in a single medium, either underwater or in the air. By systematically examining the water–air cross-medium locomotion of organisms, there has been growing interest in the development of aerial-aquatic vehicles. The goal of this review is to provide a detailed outline of the design and cross-medium theoretical research of the existing aerial-aquatic vehicles based on the research on the organisms capable of transiting between water and air. Although these designs and theoretical frameworks have been validated in many aerial-aquatic vehicles, there are still many problems that need to be addressed, such as inflexible underwater motion and unstable medium conversion. As a result, supplementation of the existing cross-medium biomimetic research, vehicle design, power selection, and cross-medium theory is urgently required to optimize the key technologies in detail. Therefore, by summarizing the existing designs and theoretical approaches on aerial-aquatic vehicles, including biomimetic research on water–air cross-medium locomotion in nature, different power selections, and cross-medium theoretical research, the relative problems and development trends on aerial-aquatic vehicles were thoroughly explored, providing significant help for the subsequent research process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data are available in the main text or supplementary materials.

References

  1. Rayner, J. M. V. (1986). Pleuston: animals which move in water and air. Endeavour, 10(2), 58–64. https://doi.org/10.1016/0160-9327(86)90131-6

    Article  Google Scholar 

  2. Nicolaou, S. (1996). Flying Boats and Seaplanes: A History from 1905. MBI Publishing.

  3. Huang, J. G., Li, J.Y, Chen, H.Y, Yang, X. B, Liang, J. H, & Wang, T.M. (2018). Design and CFD based simulation analysis of a biotic webbed feet propulsion mechanism for hydroplaning. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 83–87. https://doi.org/10.1109/ROBIO.2018.8664892.

  4. Huang, J. G., Gong, X., Wang, Z. Y, Xue, X. Q, Yang, X. B, Liang, J. H, & Zhang, D.B. (2016). The kinematics analysis of webbed feet during cormorants' swimming. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 301–306. https://doi.org/10.1109/ROBIO.2016.7866339.

  5. Reid, B. D. (2004). The story of the invention of the Reid flying submarine, RFS-1. Heritage Books.

  6. Unknown. Oregon Iron Works I,Sea Scout Unmanned Tactial Seaplane Offers Increased Mission Flexibility ans Utility. Retrieved from https://www.scribd.com/document/40874493/Seascout#

  7. Unknown. (2014). US Navy launches fuel cell powered UAV from underwater sub. Fuel Cells Bulletin, 2014(1), 4. https://doi.org/10.1016/S1464-2859(14)70009-4.

  8. U.S. Navy Launches UAV from a Submarine. (2013). Retrieved from https://news.usni.org/2013/12/06/u-s-navy-launches-uav-submarine

  9. United States Navy Demonstrates Cross-Domain Communications, Command and Control via AeroVironment Blackwing Submarine-Launched UAV. (2016). Retrieved from https://www.businesswire.com/news/home/20160907005733/en/United-States-Navy%20Demonstrates-Cross-Domain-Communications-Command

  10. Pengelley, R. (2009). All hands on deck: The sky's the limit for shipboard UAVs-Rotary-and fixed-wing unmanned aerial vehicles are beginning to take roles that have been traditionally reserved for manned maritime patrol aircraft, providing surveillance capabilities and even a limited weapons-delivery capability. Navy International, 12–17.

  11. Xu, Z. Y., Liu, D., Zhang, R., & Luo, X. (2023). Design a hybrid energy-supply for the electrically driven heavy-duty hexapod vehicle. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00351-z

    Article  Google Scholar 

  12. Ekinci, S., Abualigah, L., & Zitar, R. A. (2023). A modified oppositional chaotic local search strategy based aquila optimizer to design an effective controller for vehicle cruise control system. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00336-y

    Article  Google Scholar 

  13. Xu, B., Wang, C. Y. (2022). Cooperative navigation of cross-domain heterogeneous unmanned ship formation: recent advances and future trends. Chinese Journal of Ship Research, 17(4), 1–11. https://doi.org/10.19693/j.issn.1673-3185.02389.

  14. Lowry, D., Wintzer, A. P., Matott, M. P., Whitenack. L, B., Huber, D. R., Dean, M., & Motta, P. J. (2005). Aerial and aquatic feeding in the silver arawana, Osteoglossum bicirrhosum. Environmental Biology of Fishes, 73(4), 453-462. https://doi.org/10.1007/s10641-005-3214-4

  15. Whitehead, H. (1985). Humpback whale breaching. Investigations on Cetacea, 17, 117–155.

    Google Scholar 

  16. Waters, S., & Whitehead, H. (1990). Aerial behaviour in sperm whales. Canadian Journal of Zoology, 68(10), 2076–2082. https://doi.org/10.1139/z90-289

    Article  Google Scholar 

  17. Fish, F. E., Weber, P. W., Murray, M. M., & Howle, L. E. (2011). The tubercles on humpback whales’ flippers: Application of bio-inspired technology. Integrative and Comparative Biology, 51(1), 203–213. https://doi.org/10.1093/icb/icr016

    Article  Google Scholar 

  18. Fish, F. E., Paul, L., Terrie, M. W., & Wei, T. (2014). Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV. Journal of Experimental Biology, 217(2), 252–260. https://doi.org/10.1242/jeb.087924

    Article  Google Scholar 

  19. Fish, F. E. (2006). The myth and reality of Gray’s paradox: Implication of dolphin drag reduction for technology. Bioinspiration & Biomimetics, 1(2), R17. https://doi.org/10.1088/1748-3182/1/2/R01

    Article  Google Scholar 

  20. Wursig, B. (1979). Dolphins. Scientific American, 240(3), 136–149. https://www.jstor.org/stable/24965157.

  21. Norris, K. S., Wursig, B., & Wells, R. S. (1994). The Hawaiian Spinner Dolphin. University of California Press.

    Book  Google Scholar 

  22. Würsig, B., & Whitehead, H. (2018). Aerial Behavior. Encyclopedia of Marine Mammals (Third Edition), 6–10. https://doi.org/10.1016/B978-0-12-804327-1.00040-6.

  23. Weir, C. R., Macena, B. C. L., & di Sciara, G. N. (2012). Records of rays of the genus Mobula (Chondrichthyes: Myliobatiformes: Myliobatidae) from the waters between Gabon and Angola (eastern tropical Atlantic). Marine Biodiversity Records, 5, 26–31. https://doi.org/10.1017/S1755267212000061

    Article  Google Scholar 

  24. Davenport, J. (1994). How and why do flying fish fly? Reviews in Fish Biology and Fisheries, 4(2), 184–214. https://doi.org/10.1007/BF00044128

    Article  Google Scholar 

  25. Sato, K., Watanuki, Y., Takahashi, A., Miller, P. O., Tanaka, H., Kawabe, R., Ponganis, P. J., Handrich, Y., Akamatsu, T., Watanabe, Y., Mitani, Y., Costa, D. P., Bost, C., Aoki, K., Amano, M., Trathan, P., Shapiro, A., & Naito, Y. (2007). Stroke Frequency, but Not Swimming Speed, Is Related to Body Size in Free-Ranging Seabirds. Pinnipeds and Cetaceans. Proceedings: Biological Sciences, 274(1609), 471–477. https://doi.org/10.1098/rspb.2006.0005

    Article  Google Scholar 

  26. Lock, R. J., Vaidyanathan, R., & Burgess, S. C. (2010). Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, 3404–3409. https://doi.org/10.1109/IROS.2010.5650943.

  27. Lock, R. J., Burgess, S. C., & Vaidyanathan, R. (2014). Multi-modal locomotion: from animal to application. Bioinspir Biomim. https://doi.org/10.1088/1748-3182/9/1/011001

    Article  Google Scholar 

  28. Craft, T. J., Edmondson, M. I., & Agee, R. (1958). A comparative study of the mechanics of flying and swimming in some common brown bats. The Ohio Journal of Science, 58(4), 245–249.

    Google Scholar 

  29. Murphy, D. W., Adhikari, D., Webster, D. R., & Yen, J. (2016). Underwater flight by the planktonic sea butterfly. Journal of Experimental Biology, 219(Pt 4), 535–543. https://doi.org/10.1242/jeb.129205

    Article  Google Scholar 

  30. Gannefors, C., Böer, M., Kattner, G., Graeve, M., Eiane, K., Gulliksen, B., Hop, H., & Falk-Petersen, S. (2005). The Arctic sea butterfly Limacina helicina: Lipids and life strategy. Marine Biology, 147(1), 169–177. https://doi.org/10.1007/s00227-004-1544-y

    Article  Google Scholar 

  31. Aigeldinger, T., & Fish, F. (1995). Hydroplaning by ducklings: Overcoming limitations to swimming at the water surface. The Journal of Experimental Biology, 198(7), 1567–1574. https://doi.org/10.1242/jeb.198.7.1567

    Article  Google Scholar 

  32. Livezey, B. C., & Humphrey, P. S. (1983). Mechanics of steaming in steamer-ducks. The Auk: Ornithological Advances, 100(2), 485–488. https://doi.org/10.1093/auk/100.2.485

    Article  Google Scholar 

  33. Zufferey, R., Siddall, R., & Armanini, S. F. (2022). Between Sea and Sky: Aerial Aquatic Locomotion in Miniature Robots. Springer.

  34. Dunn, E. K. (1973). Changes in fishing ability of terns associated with windspeed and sea surface conditions. Nature, 244(5417), 520–521. https://doi.org/10.1038/244520a0

    Article  Google Scholar 

  35. Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293(5830), 293–294. https://doi.org/10.1038/293293a0

    Article  Google Scholar 

  36. DeLorenzo, R. (1989). The Loch Ness monster, gannets, and Boyle’s law. Journal of Chemical Education, 66(7), 570. https://doi.org/10.1021/ed066p570

    Article  Google Scholar 

  37. Green, J. A., White, C. R., Bunce, A., Frappell, P. B., & Butler, P. J. (2009). Energetic consequences of plunge diving in gannets. Endangered Species Research, 10, 269–279. https://doi.org/10.3354/esr00223

    Article  Google Scholar 

  38. Garthe, S., Benvenuti, S., & Montevecchi, W. A. (2000). Pursuit plunging by northern gannets (Sula bassana) feeding on capelin (Mallotus villosus). Proceedings of the Biological Sciences, 267(1454), 1717–1722. https://doi.org/10.1098/rspb.2000.1200

    Article  Google Scholar 

  39. Machovsky Capuska, G. E., Vaughn, R. L., Würsig, B., Katzir, G., & Raubenheimer, D. (2011). Dive strategies and foraging effort in the Australasian gannet Morus serrator revealed by underwater videography. Marine Ecology Progress Series, 442, 255–261. https://doi.org/10.3354/meps09458

    Article  Google Scholar 

  40. Chang, B., Croson, M., Straker, L., Gart, S., Dove, C., Gerwin, J., & Jung, S. (2016). How seabirds plunge-dive without injuries. Proc Natl Acad Sci U S A, 113(43), 12006–12011. https://doi.org/10.1073/pnas.1608628113

    Article  Google Scholar 

  41. Wang, T. M., Yang, X. B., Liang, J. H., Yao, G. C., & Zhao, W. D. (2013). CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving. Bioinspiration & Biomimetics. https://doi.org/10.1088/1748-3182/8/3/036006

    Article  Google Scholar 

  42. Zhengyang, W. (2021). Bionic configuration design and water entry performance of aquatic UAV based on water entry strategy of kingfisher. https://doi.org/10.27162/d.cnki.gjlin.2021.000827.

  43. Park, H., & Choi, H. (2010). Aerodynamic characteristics of flying fish in gliding flight. Journal of Experimental Biology, 213(Pt 19), 3269–3279. https://doi.org/10.1242/jeb.046052

    Article  Google Scholar 

  44. Deng, J., Zhang, L., Liu, Z., & Mao, X. (2019). Numerical prediction of aerodynamic performance for a flying fish during gliding flight. Bioinspir Biomim, 14(4), 046009. https://doi.org/10.1088/1748-3190/ab23e6

    Article  Google Scholar 

  45. Maciá, S., Robinson, M. P., Craze, P., Dalton, R., & Thomas, J. D. (2004). New observations on airborne jet propulsion (flight) in squid, with a review of previous reports. Journal of Molluscan Studies, 70(3), 297–299. https://doi.org/10.1093/mollus/70.3.297

    Article  Google Scholar 

  46. O’Dor, R., Stewart, J., Gilly, W., Payne, J., Borges, T. C., & Thys, T. (2013). Squid rocket science: How squid launch into air. Deep Sea Research Part II: Topical Studies in Oceanography, 95, 113–118. https://doi.org/10.1016/j.dsr2.2012.07.002

    Article  Google Scholar 

  47. Muramatsu, K., Yamamoto, J., Abe, T., Sekiguchi, K., Hoshi, N., & Sakurai, Y. (2013). Oceanic squid do fly. Marine Biology, 160(5), 1171–1175. https://doi.org/10.1007/s00227-013-2169-9

    Article  Google Scholar 

  48. Gao, X., & Jiang, L. (2004). Water-repellent legs of water striders. Nature, 432(7013), 36–36. https://doi.org/10.1038/432036a

    Article  Google Scholar 

  49. Hu, D. L., Chan, B., & Bush, J. W. M. (2003). The hydrodynamics of water strider locomotion. Nature, 424(6949), 663–666. https://doi.org/10.1038/nature01793

    Article  Google Scholar 

  50. Ribera, I., & Nilsson, A. N. (1995). Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). Canadian Journal of Zoology, 73(12), 2343–2360. https://doi.org/10.1139/z95-275

    Article  Google Scholar 

  51. Qi, D. B., Zhang, C. C., He, J. W., Yue, Y. L., Wang, J., & **ao, D. H. (2021). Observation and analysis of diving beetle movements while swimming. Scientific Reports, 11(1), 16581. https://doi.org/10.1038/s41598-021-96158-1

    Article  Google Scholar 

  52. Sudo, S., Yano, T., Kan, Y., Yamada, Y., & Tsuyuki, K. (2006). Swimming behavior of small diving beetles. Journal of Advanced Science, 18, 46–49. https://doi.org/10.2978/jsas.18.46

    Article  Google Scholar 

  53. Chang, B., Myeong, J., Virot, E., Clanet, C., Kim, H. Y., & Jung, S. (2019). Jum** dynamics of aquatic animals. Journal of the Royal Society, Interface, 16(152), 20190014. https://doi.org/10.1098/rsif.2019.0014

    Article  Google Scholar 

  54. Nauwelaerts, S., Scholliers, J. A. N., & Aerts, P. (2004). A functional analysis of how frogs jump out of water. Biological Journal of the Linnean Society, 83(3), 413–420. https://doi.org/10.1111/j.1095-8312.2004.00403.x

    Article  Google Scholar 

  55. Ribak, G., Weihs, D., & Arad, Z. (2004). How do cormorants counter buoyancy during submerged swimming? Journal of Experimental Biology, 207(12), 2101–2114. https://doi.org/10.1242/jeb.00997

    Article  Google Scholar 

  56. Quintana, F., Wilson, R. P., & Yorio, P. (2007). Dive depth and plumage air in wettable birds: The extraordinary case of the imperial cormorant. Marine Ecology Progress Series, 334, 299–310. https://doi.org/10.3354/meps334299

    Article  Google Scholar 

  57. Taylor-Burt, K. R., & Biewener, A. A. (2020). Aquatic and terrestrial takeoffs require different hindlimb kinematics and muscle function in mallard ducks. Journal of Experimental Biology. https://doi.org/10.1242/jeb.223743

    Article  Google Scholar 

  58. Biewener, A. A., & Corning, W. R. (2001). Dynamics of Mallard (Anas Platyrhynchos) Gastrocnemius Function During Swimming Versus Terrestrial Locomotion. Journal of Experimental Biology, 204(10), 1745–1756. https://doi.org/10.1242/jeb.204.10.1745

    Article  Google Scholar 

  59. Yang, Z. H., Gong, W. J., Chen, H., Wang, S., & Zhang, G. J. (2022). Research on the Turning Maneuverability of a Bionic Robotic Dolphin. IEEE Access, 10, 7368–7383. https://doi.org/10.1109/access.2022.3142521

    Article  Google Scholar 

  60. Park, Y. J., Park, D., & Cho, K. J. (2013). Design and manufacturing a robotic dolphin to increase dynamic performance. 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea, 76–77. https://doi.org/10.1109/URAI.2013.6677475.

  61. Yu, J. Z., Su, Z. S., Wu, Z. X., & Tan, M. (2016). Development of a fast-swimming dolphin robot capable of lea**. IEEE/ASME Transactions on Mechatronics, 21(5), 2307–2316. https://doi.org/10.1109/tmech.2016.2572720

    Article  Google Scholar 

  62. Yu, J., Wu, Z., & Su, Z. (2019). Motion control strategies for a repetitive lea** robotic dolphin. IEEE/ASME Transactions on Mechatronics, 24(3), 913–923. https://doi.org/10.1109/tmech.2019.2908082

    Article  Google Scholar 

  63. Chen, D., Wu, Z. X., Zhang, P. F., Tan, M., & Yu, J. Z. (2022). Performance improvement of a high-speed swimming robot for fish-like lea**. IEEE Robotics and Automation Letters, 7(2), 1936–1943. https://doi.org/10.1109/lra.2022.3142409

    Article  Google Scholar 

  64. Pham, T.-H., Nguyen, K., & Park, H. C. (2023). A robotic fish capable of fast underwater swimming and water lea** with high Froude number. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2022.113512

    Article  Google Scholar 

  65. Pham, T. H., Phan, H. V., & Park, H. C. (2021). Design and test of a tail-beating propulsion system for the robotic flying fish. The Korean Mechanical Society Spring And Autumn Conference, 97–97.

  66. Izraelevitz, J. S., & Triantafyllou, M. S. A novel degree of freedom in flap** wings shows promise for a dual aerial/aquatic vehicle propulsor. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 5830–5837. https://doi.org/10.1109/ICRA.2015.7140015.

  67. Licht, S. C., Wibawa, M. S., Hover, F. S., & Triantafyllou, M. S. (2010). In-line motion causes high thrust and efficiency in flap** foils that use power downstroke. Journal of Experimental Biology, 213(1), 63–71. https://doi.org/10.1242/jeb.031708

    Article  Google Scholar 

  68. Izraelevitz, J. S., & Triantafyllou, M. S. (2014). Adding in-line motion and model-based optimization offers exceptional force control authority in flap** foils. Journal of Fluid Mechanics, 742, 5–34. https://doi.org/10.1017/jfm.2014.7

    Article  Google Scholar 

  69. Chen, Y. F., Wang, H. Q., Helbling, E. F., Jafferis, N. T., Zufferey, R., Ong, A., Ma, K., Gravish, N., Chirarattananon, P., & Kovac, M. (2017). A biologically inspired, flap**-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2(11), eaao5619. https://doi.org/10.1126/scirobotics.aao5619.

    Article  Google Scholar 

  70. Macy, D., Eubank, R., & Atkins, E. (2008). Flying fish: A persistent ocean surveillance buoy with autonomous aerial repositioning. Proceedings of 2008 AUVSI Conference, San Diego, 87–101.

  71. Eubank, R., & Atkins, E. (2011). Unattended autonomous mission and system management of an unmanned seaplane. Infotech@Aerospace https://doi.org/10.2514/6.2011-1614.

  72. Meadows, G., Atkins, E., Washabaugh, P., Meadows, L., Bernal, L., Gilchrist, B., Smith, D., VanSumeren, H., Macy, D.,& Eubank, R. (2009). The flying fish persistent ocean surveillance platform. AIAA Infotech@ Aerospace Conference and AIAA Unmanned. Unlimited Conference, Washington D.C, USA, 1902–1916. https://doi.org/10.2514/6.2009-1902.

  73. Eubank, R. D. (2012). Autonomous flight, fault, and energy management of the flying fish solar-powered seaplane. University of Michigan.

  74. Eubank, R. D., Bradley, J. M., & Atkins, E. M. (2017). Energy-aware multiflight planning for an unattended seaplane: Flying fish. Journal of Aerospace Information Systems, 14(2), 73–91. https://doi.org/10.2514/1.i010484

    Article  Google Scholar 

  75. Gao, A., & Techet, A. H. (2011). Design considerations for a robotic flying fish. OCEANS'11 MTS/IEEE KONA, 1–8. https://doi.org/10.23919/OCEANS.2011.6107039.

  76. Yao, G. C., Liang, J. H., Wang T. M., Yang, X. B., Liu, M.,& Zhang, Y. C. (2014). Submersible unmanned flying boat: Design and experiment. IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, Indonesia, 1308–1313. https://doi.org/10.1109/ROBIO.2014.7090514.

  77. Hou, T. G., Yang, X. B., Su, H. H., Jiang, B. H., Chen, L. K., Wang, T. M.,& Liang, J. H. (2019). Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms. 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 4681–4687. https://doi.org/10.1109/ICRA.2019.8793702.

  78. Hou, T. G., Yang, X. B., Su, H. H., Chen, L. K., Wang, T. M., Liang, J. H.,& Zhang, S. Y. (2019). Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology tradeoff. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 1020–1026. https://doi.org/10.1109/ROBIO49542.2019.8961447.

  79. Liang, J. H., Yang, X. B., Wang, T. M., Yao, G. C., & Zhao, W. D. (2013). Design and experiment of a bionic gannet for plunge-diving. Journal of Bionic Engineering, 10(3), 282–291. https://doi.org/10.1016/s1672-6529(13)60224-3

    Article  Google Scholar 

  80. Yang, X. B., Wang, T. M., Liang, J. H., Yao, G. C.,& Zhao, W. D. (2013). Submersible unmanned aerial vehicle concept design study. 2013 Aviation Technology, Integration, and Operations Conference, Los Angeles, USA. https://doi.org/10.2514/6.2013-4422.

  81. Liang, J. H., Yao, G. C., Wang, T. M., Yang, X. B., Zhao, W. D., Song, G., & Zhang, Y. C. (2014). Wing load investigation of the plunge-diving locomotion of a gannet Morus inspired submersible aircraft. Science China Technological Sciences, 57(2), 390–402. https://doi.org/10.1007/s11431-013-5437-5

    Article  Google Scholar 

  82. Yang, X. B., Liang, J. H., Wang, T. M., Yao, G. C., Zhao, W. D., Zhang, Y. C.,& Han, C. H. (2013). Computational simulation of a submersible unmanned aerial vehicle impacting with water. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 1138–1143. https://doi.org/10.1109/ROBIO.2013.6739617.

  83. Han, K., & Song, W. (2022). Concept Generation of New Configurations for Air-Water Vehicles. AIAA AVIATION 2022 Forum, 3376. https://doi.org/10.2514/6.2022-3376.

  84. Guo, D. (2019). Modelling and experimental investigations of a bi-modal unmanned underwater/air system. RMIT University.

  85. Guo, D., Bacciaglia, A,, Simpson, M., Bil, C.,& Marzocca, P. (2019). Design and development a bimodal unmanned system. AIAA Scitech 2019 Forum, 2096. https://doi.org/10.2514/6.2019-2096.

  86. Wang, B. C. (2019). Dynamic modeling and motion control for bionic folding three-rotor cross-media UAV. https://doi.org/10.27052/d.cnki.gzjgu.2019.000960.

  87. Fabian, A., Feng, Y., & Swartz, E. (2012). Hybrid aerial underwater vehicle (MIT Lincoln Lab). Retrieved from https://phoenixfiles.olin.edu/do/23bf82e5-0d2c-471c-a8d2-62a51d619b16

  88. Siddall, R., & Kovac, M. (2014). Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms. Bioinspir Biomim. https://doi.org/10.1088/1748-3182/9/3/031001

    Article  Google Scholar 

  89. Siddall, R., Ortega Ancel, A., & Kovac, M. (2017). Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus, 7(1), 20160085. https://doi.org/10.1098/rsfs.2016.0085

    Article  Google Scholar 

  90. Siddall, R., & Kovac, M. (2017). Fast Aquatic Escape With a Jet Thruster. IEEE/ASME Transactions on Mechatronics, 22(1), 217–226. https://doi.org/10.1109/TMECH.2016.2623278

    Article  Google Scholar 

  91. Rockenbauer, F., Jeger, S., Beltran, L., Berger, M., Harms, M., Kaufmann, N., Rauch, M., Reinders, M., Lawrance, N. R. J.,& Stastny, T. (2021). Dipper: A Dynamically Transitioning Aerial-Aquatic Unmanned Vehicle. Conference on Robotics - Science and Systems, ELECTR NETWORK. https://doi.org/10.15607/RSS.2021.XVII.048.

  92. Bai, X. Q., Sun, X. L., Song, Z., **ng, X., Li, Z., Liu, C. F., Zhang, L.,& Ling, C. (2022). Design of a sweptback wing of water-air amphibious trans-media unmanned vehicles. 2022 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers, 563–568. https://doi.org/10.1145/3544109.3544313.

  93. Yun, Z., Feng, Y. H., Tang, X. Y., & Chen, L. (2022). Analysis of motion characteristics of bionic morphing wing based on sarrus linkages. Applied Sciences, 12(12), 6023. https://doi.org/10.3390/app12126023

    Article  Google Scholar 

  94. Bacciaglia, A., Guo, D., & Marzocca, P. (2018). Bimodal unmanned vehicle: propulsion system integration and water/air interface testing. 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brazil.

  95. Ortega Ancel, A. (2020). Performance enhancing strategies for aerial aquatic robotic vehicles. Imperial College London.

  96. Zufferey, R., Ancel, A. O., Farinha, A., Siddall, R., Armanini, S. F., Nasr, M. Brahmal, R. V., Kennedy, G.,& Kovac, M. (2019). Consecutive aquatic jump-gliding with water-reactive fuel. Science robotics, 4(34), eaax7330. https://doi.org/10.1126/scirobotics.aax7330.

  97. Shin, B., Kim, H. Y., & Cho, K. J. (2008). Towards a biologically inspired small-scale water jum** robot. 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 127–131. https://doi.org/10.1109/BIOROB.2008.4762896.

  98. Zhao, J., Zhang, X. B., Chen, N., & Pan, Q. (2012). Why superhydrophobicity Is crucial for a water-jum** microrobot? Experimental and theoretical investigations. ACS Applied Materials & Interfaces, 4(7), 3706–3711. https://doi.org/10.1021/am300794z

    Article  Google Scholar 

  99. Yan, J., Yang, K., Wang, T., Zhang, X.,& Zhao, J. (2016). A continuous jum** robot on water mimicking water striders. 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 4686–4691. https://doi.org/10.1109/ICRA.2016.7487669.

  100. Jiang, F., Zhao, J., Kota, A. K., ** robot. IEEE Robotics and Automation Letters, 2(3), 1272–1279. https://doi.org/10.1109/LRA.2017.2662738

    Article  Google Scholar 

  101. Brown, G. (2016). New UAV can launch from underwater for aerial missions. Retrieved from https://www.jhuapl.edu/news/news-releases/160317-new-uav-can-launch-underwater-aerial-missions

  102. Maia, M. M., Soni, P., & Diez, F. J. (2015). Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition. ar**v preprint ar**v:1507.01932. https://doi.org/10.48550/ar**v.1507.01932.

  103. Maia, M. M., Mercado, D. A., & Diez, F. J. (2017). Design and implementation of multirotor aerial-underwater vehicles with experimental results. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 961–966. https://doi.org/10.1109/IROS.2017.8202261.

  104. Alzu’bi, H., Mansour, I., & Rawashdeh, O. (2018). Loon Copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control. Journal of Field Robotics, 35(5), 764–778. https://doi.org/10.1002/rob.21777

    Article  Google Scholar 

  105. Alzu'bi, H., Akinsanya, O., Kaja, N., Mansour, I., & Rawashdeh, O. (2015). Evaluation of an aerial quadcopter power-plant for underwater operation. 2015 10th International Symposium on Mechatronics and its Applications (ISMA), 1–4. https://doi.org/10.1109/ISMA.2015.7373488.

  106. Alzu'bi, H. M. A. Q. (2018). Loon Copter: Modeling, Implementation, and Stability Control of a Fully-featured Aquatic-aerial Quadcopter. Oakland University.

  107. Bershadsky, D., Haviland, S., Valdez, P. E.,& Johnson, E. (2016). Design considerations of submersible unmanned flying vehicle for communications and underwater sampling. OCEANS 2016 MTS/IEEE Monterey, 1–8. https://doi.org/10.1109/OCEANS.2016.7761266.

  108. Zha, J., Thacher, E., Kroeger, J., Mäkiharju, S. A., & Mueller, M. W. (2019). Towards breaching a still water surface with a miniature unmanned aerial underwater vehicle. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 1178–1185. https://doi.org/10.1109/ICUAS.2019.8798350.

  109. Li, L., Wang, S. Q., Zhang, Y. Y., Song, S. Y., Wang, C. Q., Tan, S. C., Zhao, W., Wang, G., Sun, W. G., & Yang, F. Q. (2022). Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces. Science robotics, 7(66), eabm6695. https://doi.org/10.1126/scirobotics.abm6695.

  110. Tan, Y. H., & Chen, B. M. (2021). Underwater stability of a morphable aerial-aquatic quadrotor with variable thruster angles. 2021 IEEE International Conference on Robotics and Automation (ICRA), ** of aerial and aquatic modes for a morphable multimodal quadrotor. IEEE/ASME Transactions on Mechatronics, 25(4), 2065–2074. https://doi.org/10.1109/TMECH.2020.2998329

    Article  Google Scholar 

  111. Tan, Y. H., & Chen, B. M. (2020). A morphable aerial-aquatic quadrotor with coupled symmetric thrust vectoring. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2223–2229. https://doi.org/10.1109/ICRA40945.2020.9196687.

  112. Tan, Y. H., & Chen, B. M. (2019). Design of a morphable multirotor aerial-aquatic vehicle. OCEANS 2019 MTS/IEEE SEATTLE, 1–8. https://doi.org/10.23919/OCEANS40490.2019.8962867.

  113. Herng, T. Y. (2021). Design of a morphable aerial-underwater multirotor robot. National University of Singapore (Singapore).

  114. Tan, Y. H., & Chen, B. M. (2020). A lightweight waterproof casing for an aquatic UAV using rapid prototy**. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1154–1161. https://doi.org/10.1109/ICUAS48674.2020.9214029.

  115. Liu, X. C., Dou, M. H., Huang, D. Y., Wang, B., Ren, Q. Y., Cui, J. Q., Dou, L. H.,& Chen, B. M. (2023). Mirs-X: Design and implementation of an aerial-aquatic quadrotor with tiltable propulsion units. ar**v preprint ar**v:2301.12344. https://doi.org/10.48550/ar**v.2301.12344.

  116. Tan, Y. H., Siddall, R., & Kovac, M. (2017). Efficient aerial–aquatic locomotion with a single propulsion system. IEEE Robotics and Automation Letters, 2(3), 1304–1311. https://doi.org/10.1109/LRA.2017.2665689

    Article  Google Scholar 

  117. Tan, Y. H., & Chen, B. M. (2019). Motor-propeller matching of aerial propulsion systems for direct aerial-aquatic operation. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 1963–1970. https://doi.org/10.1109/IROS40897.2019.8968257.

  118. Horn, A. C., Pinheiro, P. M., Silva, C. B., Neto, A. A., & Drews, Jr. P. L. J. (2019). A study on configuration of propellers for multirotor-like hybrid aerial-aquatic vehicles. 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil, 173–178. https://doi.org/10.1109/ICAR46387.2019.8981667.

  119. Semenov, I. Y. (2020). Development of Hybrid Air-Water Rotor Transition Thrust Prediction and Control. University of Maryland.

    Google Scholar 

  120. Villegas, A., Mishkevich, V., Gulak, Y., & Diez, F. J. (2017). Analysis of key elements to evaluate the performance of a multirotor unmanned aerial–aquatic vehicle. Aerospace Science and Technology, 70, 412–418. https://doi.org/10.1016/j.ast.2017.07.046

    Article  Google Scholar 

  121. Peloquin, R. A., Thibault, D., & Desbiens, A. L. (2017). Design of a passive vertical takeoff and landing aquatic UAV. IEEE Robotics and Automation Letters, 2(2), 381–388. https://doi.org/10.1109/LRA.2016.2633623

    Article  Google Scholar 

  122. Young, T. Z. (2014). Design and testing of an unmanned aerial to underwater vehicle. 14th AIAA Aviation Technol. https://doi.org/10.2514/6.2014-2721.

  123. Edwards, D., Arnold, N., & Heinzen, S. (2017). Flying emplacement of an underwater glider. OCEANS 2017 - Anchorage, 1–6.

  124. Danielle, C., Meaghan, R., Peter, S., James, C., Peter, W., Eric, S., Caleb, F., Kevin, M., Lucas, F. V., Paulo, C.,& Dioser F. S. (2017). Design, fabrication, and testing of the fixed-wing air and underwater drone. 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, Colorado. https://doi.org/10.2514/6.2017-4447.

  125. Moore, J., Fein, A., & Setzler, W. (2018). Design and analysis of a fixed-wing unmanned aerial-aquatic vehicle. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 1236–1243. https://doi.org/10.1109/ICRA.2018.8461240.

  126. Wei, Z. Y., Teng, Y. H., Meng, X. Y., Yao, B. H., & Lian, L. (2022). Lifting-principle-based design and implementation of fixed-wing unmanned aerial–underwater vehicle. Journal of Field Robotics, 39(6), 694–711. https://doi.org/10.1002/rob.22071

    Article  Google Scholar 

  127. Weisler, W., Stewart, W., Anderson, M. B., Peters, K. J., Gopalarathnam, A., & Bryant, M. (2018). Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments. IEEE Journal of Oceanic Engineering, 43(4), 969–982. https://doi.org/10.1109/joe.2017.2742798

    Article  Google Scholar 

  128. Stewart, W., Weisler, W., Anderson, M., Bryant, M., & Peters, K. (2019). Dynamic modeling of passively draining structures for aerial–aquatic unmanned vehicles. IEEE Journal of Oceanic Engineering, 45(3), 840–850. https://doi.org/10.1109/JOE.2019.2898069

    Article  Google Scholar 

  129. Stewart, W., Weisler, W., MacLeod, M., Powers, T., Defreitas, A., Gritter, R., Anderson, M., Peters, K., Gopalarathnam, A., & Bryant, M. (2018). Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system. Bioinspir Biomim, 13(5), 056013. https://doi.org/10.1088/1748-3190/aad48b

    Article  Google Scholar 

  130. Lu, D., **ong, C. K., Lyu, B. Z., Zeng, Z., & Lian, L. (2018). Multi-mode hybrid aerial underwater vehicle with extended endurance. OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), 2018, 1–7. https://doi.org/10.1109/OCEANSKOBE.2018.8559438

    Article  Google Scholar 

  131. Lu, D., **ong, C. K., Z., Zeng, Z.,& Lian, L. (2019). A multimodal aerial underwater vehicle with extended endurance and capabilities. 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 4674–4680. https://doi.org/10.1109/ICRA.2019.8793985.

  132. Lu, D., **ong, C. K., Zhou, H. X., Lyu, C. X., Hu, R., Yu, C. Y., Zeng, Z., & Lian, L. (2021). Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2020.108324

    Article  Google Scholar 

  133. Lyu, C. X., Lu, D., **ong, C. K., Hu, R., **, Y. F., Wang, J. H., Zeng, Z., & Lian, L. (2022). Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments. Journal of Field Robotics, 39(5), 543–556. https://doi.org/10.1002/rob.22063

    Article  Google Scholar 

  134. Hu, R., Lu, D., **ong, C. K., Lyu, C. X., Zhou, H. X., **, Y., & F., Wei, T. J., Yu, C. Y., Zeng, Z., & Lian, L. (2022). Modeling, characterization and control of a piston-driven buoyancy system for a hybrid aerial underwater vehicle. Applied Ocean Research. https://doi.org/10.1016/j.apor.2021.102925

    Article  Google Scholar 

  135. Ang, H. S., & Wang, Y. (2022). Design and control technology of a variable axis propeller unmanned vehicle cross region of water and air. Unmanned Systems Technology, 5, 1–11.

    Google Scholar 

  136. Drews, P. L. J., Neto, A. A., & Campos, M. F. M. (2014). Hybrid unmanned aerial underwater vehicle: Modeling and simulation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, 4637–4642. https://doi.org/10.1109/IROS.2014.6943220

    Article  Google Scholar 

  137. Horn, A. C., Pinheiro, P. M., Grando, R. B., da Silva, C. B., Neto, A. A.,& Drews, P. L. J. (2020). A novel concept for hybrid unmanned aerial underwater vehicles focused on aquatic performance. 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), 1–6. https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9307110.

  138. Li, J., Chen, S. Q., Guo, M. M., Tao, T. P.,& Li, R. L. (2021). Underwater dynamics modeling and simulation analysis of trans-media multicopter. 2021 5th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 116–122. https://doi.org/10.1109/icras52289.2021.9476444.

  139. Chen, Y. L., Qin, J. C., Sun, H. P., Shang, T., Zhang, X. G., & Hu, Y. (2021). Global optimization for cross-domain aircraft based on kriging model and particle swarm optimization algorithm. Scientia Iranica, 28(1), 209–222. https://doi.org/10.24200/sci.2019.50814.1886.

  140. Puppala, R., Sivadasan, N., Vyas, A., Molawade, A., Ranganathan, T., & Thondiyath, A. (2019). Design, estimation of model parameters, and dynamical study of a hybrid aerial-underwater robot: Acutus. 16th International Conference on Informatics in Control, Automation and Robotics, Prague, Czech Republic, 2, 423–430. https://doi.org/10.5220/0007926104230430.

  141. Vyas, A., Puppala, R., Sivadasan, N., Molawade, A., Ranganathan T.,& Thondiyath, A. (2019). Modelling and dynamic analysis of a novel hybrid aerial-underwater robot - Acutus. OCEANS 2019, Marseille, France, 1–6. https://doi.org/10.1109/OCEANSE.2019.8867419.

  142. Gao, Y., Zhang, H., Yang, H., Tan, S. Z., Gulliver, T. A., & Lu, T. T. (2021). Trans-domain amphibious unmanned platform based on coaxial counter-propellers: Design and experimental validation. IEEE Access, 9, 149433–149446. https://doi.org/10.1109/access.2021.3125138

    Article  Google Scholar 

  143. Bi, Y. B., **, Y. F., Lyu, C. X., Zeng, Z., & Lian, L. (2022). Nezha-Mini: Design and locomotion of a miniature low-cost hybrid aerial underwater vehicle. IEEE Robotics and Automation Letters, 7(3), 6669–6676. https://doi.org/10.1109/lra.2022.3176438

    Article  Google Scholar 

  144. Qi, D., Feng, J., & Li, Y. (2016). Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground effect. Journal of Vibroengineering, 18(6), 3743–3756. https://doi.org/10.21595/jve.2016.17127.

  145. Yan, Q. M., Hu, J. H., Chen, G. M., Tan, J. Y., & Ge Y. (2020). Modeling and control on air-water crossing of a double-layer quadrotor trans-media vehicle. Flight Dynamics, 38(5), 50–56. https://doi.org/10.13645/j.cnki.f.d.20200622.003.

    Article  Google Scholar 

  146. Qin, J. C. (2020). Research on Motion Control of Trans-medium Multi-rotor Water-air Amphibious Vehicle Jilin University.

  147. Jiang, Y. H., Bai, T., Gao, Y., & Guan, L. W. (2018). Water entry of a constraint posture body under different entry angles and ventilation rates. Ocean Engineering, 153, 53–59. https://doi.org/10.1016/j.oceaneng.2018.01.091

    Article  Google Scholar 

  148. Worthington, A. M., & Cole, Reginald Sorrè. (1897). Impact with a liquid surface, studied by the aid of instantaneous photography. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 189, 137–148.

    MATH  Google Scholar 

  149. De Backer, G., Vantorre, M., Beels, C., Ge Pré, J., Victor, S., De Rouck, J., Blommaert, C., & Van Paepegem, W. (2009). Experimental investigation of water impact on axisymmetric bodies. Applied Ocean Research, 31(3), 143–156. https://doi.org/10.1016/j.apor.2009.07.003

    Article  Google Scholar 

  150. Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L., & Clanet, C. (2007). Dynamics of transient cavities. Journal of Fluid Mechanics, 591, 1–19. https://doi.org/10.1017/S0022112007007343

    Article  MATH  Google Scholar 

  151. Truscott, T. T. (2009). Cavity dynamics of water entry for spheres and ballistic projectiles (Vol. 70). Massachusetts Institute of Technology.

  152. Gekle, S., Peters, I. R., Gordillo, J. M., van der Meer, D., & Lohse, D. (2010). Supersonic air flow due to solid-liquid impact. Physical Review Letters, 104(2), 024501. https://doi.org/10.1103/PhysRevLett.104.024501

    Article  Google Scholar 

  153. Aristoff, J. M., Truscott, T. T., & Techet, A. H. (2010). The water entry of decelerating spheres. Physics of Fluids, 22(3), 032102. https://doi.org/10.1063/1.3309454

    Article  MATH  Google Scholar 

  154. **ng, B. B., Wu, W. H., Liao, F., Tu, M. F.,& Lu, M. Q. (2023). Trajectory prediction model of blended wing body impact entry water based on deep belief Network. Advances in Guidance, Navigation and Control, 7200–7208. https://doi.org/10.1007/978-981-19-6613-2_695.

  155. Wei, T. J., Hu, R., Li, J. P., Bi, Y. B., **, Y. F., Lu, D., Zeng, Z., & Lian, L. (2022). Experimental study on trans-media hydrodynamics of a cylindrical hybrid unmanned aerial underwater vehicle. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2022.111190

    Article  Google Scholar 

  156. Wu, Z. Y., Zhang, C. C., Wang, J., Shen, C., Yang, L., & Ren, L. Q. (2020). Water entry of slender segmented projectile connected by spring. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2020.108016

    Article  Google Scholar 

  157. Liu, H. P., Han, B., Zhang, Y. Q., Liu, G. D., & Chen, H. L. (2019). Numerical simulation study on influence of top jet in object water entering impact. Journal of Engineering Thermophysics, 40, 300–305.

    Google Scholar 

  158. Speirs, N. B., Belden, J., Pan, Z., Holekamp, S., Badlissi, G., Jones, M., & Truscott, T. T. (2019). The water entry of a sphere in a jet. Journal of Fluid Mechanics, 863, 956–968. https://doi.org/10.1017/jfm.2018.931

    Article  MathSciNet  MATH  Google Scholar 

  159. Marcer, R., Berhault, C., De Jouëtte, C., Moirod, N.,& Shen, L. (2010). Validation of CFD codes for slamming. 5th European Conference on Computational Fluid Dynamics (ECCOMAS CFD), Lisbon, Portugal, 14–17.

  160. Yang. J., Qi, D., Zhang, X. Q., Li, Y. L., & Zhang, J. K. (2017). Calculation and analysis of added mass for an object during its vertical water exit. 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 191–196. https://doi.org/10.1109/CCDC.2017.7978090.

  161. He, C. T., Min, J. S., **, D. Q., & Huang, H. L. (2012). Nummerical simlation of early air-cavity of cylinder cone with vertical water-entry. Engineering Mechanics, 29, 237–243.

    Google Scholar 

  162. Wick, A., Zink, G., Ruszkowski, R.,& Shih, T. (2007). Computational simulation of an unmanned air vehicle impacting water. 45th AIAA Aerospace Sciences Meeting and Exhibit, https://doi.org/10.2514/6.2007-70.

  163. Neto, A. A., Mozelli, L. A., Drews, P. L. J.,& Campos, M. F. M. . (2015). Attitude control for an hybrid unmanned aerial underwater vehicle: A robust switched strategy with global stability. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 395–400. https://doi.org/10.1109/ICRA.2015.7139029.

  164. da Rosa, R. T. S., Evald, P. J. D. O., Drews, P. L. J., Neto, A. A., Horn, A. C., Azzolin, R. Z.,& Botelho, S. S. C. (2018). A comparative study on sigma-point kalman filters for trajectory estimation of hybrid aerial-aquatic vehicles. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 7460–7465. https://doi.org/10.1109/IROS.2018.8593556.

  165. Mercado, D., Maia, M., & Diez, F. J. (2019). Aerial-underwater systems, a new paradigm in unmanned vehicles. Journal of Intelligent & Robotic Systems, 95(1), 229–238. https://doi.org/10.1007/s10846-018-0820-x

    Article  Google Scholar 

  166. Mercado, R., Maia, M. M., & Diez, F. J. (2018). Modeling and control of unmanned aerial/underwater vehicles using hybrid control. Control Engineering Practice, 76, 112–122. https://doi.org/10.1016/j.conengprac.2018.04.006

    Article  Google Scholar 

  167. Moore, J. (2019). Closed-Loop Control of a Delta-Wing Unmanned Aerial-Aquatic Vehicle. ar**v preprint. https://doi.org/10.48550/ar**v.1906.01532.

  168. Chen, Y. Q., Liu, Y. W., Meng, Y. R., Yu, S. H., & Zhuang, Y. (2019). System Modeling and Simulation of an Unmanned Aerial Underwater Vehicle. Journal of Marine Science and Engineering. https://doi.org/10.3390/jmse7120444

    Article  Google Scholar 

  169. Chen, Q., Zhu, D., & Liu, Z. (2021). Attitude control of aerial and underwater vehicles using single-input FUZZY P+ID controller. Applied Ocean Research. https://doi.org/10.1016/j.apor.2020.102460

    Article  Google Scholar 

  170. Huo Yujia, L. Y., & Feng **sheng. (2021). Water-surface take-off control of aquatic-aerial trans-domain robot with reinforcement learning. Electric Machines and Control, 25, 139–150. https://doi.org/10.15938/j.emc.2021.12.015.

  171. Ma, Z., Feng, J., & Yang, J. (2018). Research on vertical air–water trans-media control of hybrid unmanned aerial underwater vehicles based on adaptive sliding mode dynamical surface control. International Journal of Advanced Robotic Systems. https://doi.org/10.1177/1729881418770531

    Article  Google Scholar 

  172. Chen, G., Liu, A., & Hu, J. (2020). Attitude and altitude control of unmanned aerial-underwater vehicle based on incremental nonlinear dynamic inversion. IEEE Access, 8, 156129–156138. https://doi.org/10.1109/access.2020.3015857

    Article  Google Scholar 

  173. Lu, M. Q., Wu, W. H., Liao, F., Fan, Z. L., & **ng, B. B. (2023). Nonsingular fast terminal sliding-mode tracking control for hybrid aerial underwater vehicles. Advances in Guidance, Navigation and Control, 845, 7253–7264. https://doi.org/10.1007/978-981-19-6613-2_700

    Article  Google Scholar 

  174. Zhang, H. W., Zeng, Z., Yu, C. Y., Jiang, Z. N., Han, B., & Lian, L. (2020). Predictive and sliding mode cascade control for cross-domain locomotion of a coaxial aerial underwater vehicle with disturbances. Applied Ocean Research, 100, 1–12. https://doi.org/10.1016/j.apor.2020.102183

    Article  Google Scholar 

  175. Lu, D., **ong, C. K., Zeng, Z., & Lian, L. (2019). Adaptive dynamic surface control for a hybrid aerial underwater vehicle with parametric dynamics and uncertainties. IEEE Journal of Oceanic Engineering, 45(3), 740–758. https://doi.org/10.1109/JOE.2019.2903742

    Article  Google Scholar 

  176. Lu, D., Guo, Y. H., **ong, C. K., Zeng, Z., & Lian, L. (2022). Takeoff and Landing Control of a Hybrid Aerial Underwater Vehicle on Disturbed Water’s Surface. IEEE Journal of Oceanic Engineering, 47(2), 295–311. https://doi.org/10.1109/joe.2021.3124515

    Article  Google Scholar 

  177. Bi, Y. B., Lu, D., Zeng, Z., & Lian, L. (2022). Dynamics and control of hybrid aerial underwater vehicle subject to disturbances. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2022.110933

    Article  Google Scholar 

  178. Zeng, Z., Lyu, C. X., Bi, Y. B., **, Y. F., Lu, D., & Lian, L. (2022). Review of hybrid aerial underwater vehicle: Cross-domain mobility and transitions control. Ocean Engineering, 248, 110840. https://doi.org/10.1016/j.oceaneng.2022.110840

    Article  Google Scholar 

Download references

Funding

This work was supported by the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures and National Natural Science Foundation of China grant nos. 51875281711 and 51861135306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihong Ji.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, X., Cao, K. et al. Design and Theoretical Research on Aerial-Aquatic Vehicles: A Review. J Bionic Eng 20, 2512–2541 (2023). https://doi.org/10.1007/s42235-023-00418-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00418-x

Keywords