Log in

Secondary metabolites of Siberian phytopathogenic fungi of the genus Corinectria Gonzalez & Chaverri and their phytotoxicity

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Ascomycete fungi isolated in Central Siberia from canker lesions of Abies sibirica Ledeb. were assigned to the genus Corinectria Gonzalez & Chaverri. Our earlier research has shown four Corinectria Siberian strains to be significantly different genetically from the known Corinectria spp. This work investigated the secondary metabolites of 23 morphologically similar Corinectria Siberian strains and their phytotoxicity. The strains were divided into two types by their morphological and cultural traits, MCT1 and MCT2. The MCT1 strains synthesized the meroterpenoids ilicicolins A and B, ilicicolin A epoxide and chlorocylindrocarpol; the MCT2 strains produced ilicicolins C, D (ascochlorin), F and ascofuranol. The phytotoxicity of the Corinectria strains showed a significant heterogeneity to Picea obovata seeds and was exhibited by 31% of the MCT1 strains and 50% of the МСТ2 strains. The more phytotoxic strains had an inhibitory effect on A. sibirica calluses. Ilicicolins C, D, and F synthesized by the MCT2 strains significantly inhibited the growth processes of both A. sibirica seedlings and Pinus sibirica Du Tour saplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldridge DC, Borrow A, Foster RG, Large MS, Spencer H, Turner WB (1972) Metabolites of Nectria coccinea. J Chem Soc Perkin Trans 1(17):2136–2141

    Article  Google Scholar 

  • Antipova TV, Zhelifonova VP, Litovka YA, Pavlov IN, Baskunov BP, Timofeev AA, Kozlovsky AG (2020) Secondary metabolites of the siberian strains Heterobasidion Annosum Sensu Lato. Appl Biochem Microbiol 56:185–193

    Article  CAS  Google Scholar 

  • Antipova TV, Zhelifonova VP, Litovka YA, Pavlov IN, Baskunov BP, Kokh ZA, Makolova PV, Timofeev AA, Kozlovsky AG (2022) Secondary metabolites of six siberian and crimean Armillaria species and their in vitro phytotoxicity to pine, larch and poplar. iForest Biogeosci Forest 15(1):38–46. https://doi.org/10.3832/ifor3840-014

  • Araki Y, Awakawa T, Matsuzaki M, Cho R, Hoshino S, Shinohara Y, Yamamoto M, Kido Y, Inaoka DK, Nagamune K, Ito K, Abe I, Kita K (2019) Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium Egyptiacum. Proc Natl Acad Sci USA 116(17):8269–8274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayer WA, Shewchuk LM (1986) Metabolites of Nectria Fuckeliana. J Nat Prod 49(5):947–948

    Article  Google Scholar 

  • Bal-Tembe S, Kundu S, Roy K, Hiremath CP, Gole G, Pinto de Souza E, Vijaya Kumar RKS, Gates D, Pillmor JB (1999) Activity of the ilicicolins against plant pathogenic fungi. Pest Manag Sci 55(6):645–647

    Article  CAS  Google Scholar 

  • Biriukov VV, Pavlov IN, Litovka YA, Oreshkova NV, Sharov VV, Simonov EP, Kuzmin DA, Krutovsky KV (2022) De novo transcriptome assembly and annotation of a new plant pathogenic corinectria sp. strain in Siberia. Mycol Phytopathol 56(2):114–126

    Google Scholar 

  • Bukhalo A (1988) Higher edible basidiomycetes in pure culture. Kiev: Naukova Dumka, 1988; 144 pp. (in Russian)

  • Crane PE, Hopkins AJM, Dick MA, Bulman LS (2009) Behaviour of Neonectria fuckeliana causing a pine canker disease in New Zealand. Can J Forest for Res 39:2119–2128. https://doi.org/10.1139/X09-133

  • Dick MA, Power MWP, Carlson CA (2011) Neonectria fuckeliana infection of Pinus radiata nursery stock. New Z ealand Plant Protect 64:183–187. https://doi.org/10.30843/nzpp.2011.64.5979

  • Gonzalez CD, Chaverri P (2017) Corinectria, a new genus to accommodate Neonectria fuckeliana and C. constricta sp. nov. from Pinus radiata in Chile. Mycol Progr 16:1015–1027

    Article  Google Scholar 

  • Gonzalez C, Morales R, Riegel R, Aravena M, Valenzuela E (2015) Geographical distribution and phenotypic and molecular characterization of Neonectria Fuckeliana, associated with upper-stem cankers of Pinus radiata in Chile. Bosque 36:531–541

    Article  Google Scholar 

  • Gutierrez M, Theodulos Cr, Lolas JRM, Schmeda-Hirschmann G (2005) Bioactive metabolites from the fungus Nectria Galligena, the main apple canker agent in Chile. J Agric Food Chem 53:7701–7708

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa S, Minato H, Katagiri K (1971) The ilicicolins, antibiotics from Cylindrocladium Ilicicola. J Antibiot (Tokyo) 24(9):653–654

    Article  CAS  PubMed  Google Scholar 

  • Hirotani M, O’Reilly J, Donnelly DMX (1977) Fomannoxin– toxic metabolite of Fomes Annosus. Tetrahedron Lett 18:651–652

    Article  Google Scholar 

  • Lee SH, Kwak CH, Lee SK, Ha SH, Park J, Chung TW, Ha KT, Suh SJ, Chang YCh, Chang HW, Lee YC, Kang BS, Magae J, Kim CH (2016) Anti-inflammatory effect of ascochlorin in LPS-stimulated RAW 264.7 macrophage cells is accompanied with the down-regulation of iNOS, COX-2 and proinflammatory cytokines through NF-κB, ERK1/2, and p38 signaling pathway. J Cell Biochem 117:978–987. https://doi.org/10.1002/jcb.25383

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, USA, p 88

    Book  Google Scholar 

  • Liu X, Chen X, Qian F, Zhu T, Xu J, Li Y, Zhang L, Jiao B (2015) Chlorinated phenolic sesquiterpenoids from the Arctic fungus Nectria sp. B-13. Biochem Syst Ecol 59:22–25

    Article  CAS  Google Scholar 

  • Lombard C, Merve NA, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzler B (1997) Quantitative assessment of fungal colonization in Norway spruce after green pruning. Eur J for Pathol 27:1–11

    Article  Google Scholar 

  • Minato H, Katayama T, Hayakawa S, Katagiri K (1972) Identification of ilicicolins with ascochlorin and LL-Z 1272. J Antibiot (Tokyo) 25(5):315–316

  • Morales R (2009) Detection of Neonectria fuckeliana in Chile associated to stem cankers and malformation in Pinus radiata plantations. Bosque 30:106–110

    Article  Google Scholar 

  • Norkrans B (1953) The effect of glutamic acid, aspartic acid and related compounds on the growth of certain Tricholoma species. Physiol Plant 6:584–593

    Article  CAS  Google Scholar 

  • Ouellette GB (1972) Nectria macrospora (wr.) Ouellette sp. nov. (= N. fuckeliana var. Macrospora): strains, physiology and pathogenicity, and comparison with N. fuckeliana var. Fuckeliana. Eur J for Forest Pathol 2:172–181

  • Pavlov IN, Vasaitis R, Litovka YA, Stenlid J, Jankovsky L, Timofeev AA, Menkis A (2020) Occurrence and pathogenicity of Corinectria spp.– an emerging canker disease of Abies Sibirica in Central Siberia. Sci Rep 20:5597. https://doi.org/10.1038/s41598-020-62566-y

    Article  CAS  Google Scholar 

  • Phillips DH, Burdekin DA (1982) Diseases of forest and ornamental trees. Palgrave Macmillan London, p. 435. https://doi.org/10.1007/978-1-349-06177-8

  • Rebane R, Kruve A, Liigand P, Liigand J, Herodes K, Leito I (2016) Establishing atmospheric pressure chemical ionization efficiency scale. Anal Chem 88(7):3435–3439. https://doi.org/10.1021/acs.analchem.5b04852

  • Smerlis E (1969) Pathogenicity tests of four pyrenomycetes in Quebec. Plant Dis Rep 53:979–981

    Google Scholar 

  • Tamura G, Suzuki S, Takatsuki A, Ando K, Arima K (1968) Ascochlorin, a new antibiotic, found by the paper-disc agar-diffusion method. I. isolation, biological and chemical properties of ascochlorin. (Studies on antiviral and antitumor antibiotics. I.) J Antibiot (Tokyo) 21(9):539–544. https://doi.org/10.7164/antibiotics.21.539

  • Yu H-B, Jiao H, Zhu Y-P, Zhang J-P, Lu X-L, Liu X-Y (2019) Bioactive metabolites from the Arctic fungus Nectria sp. B-13. J Asian Nat Prod Res 21(10):961–969

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V. Antipova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipova, T.V., Zhelifonova, V.P., Litovka, Y.A. et al. Secondary metabolites of Siberian phytopathogenic fungi of the genus Corinectria Gonzalez & Chaverri and their phytotoxicity. J Plant Pathol (2024). https://doi.org/10.1007/s42161-024-01619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42161-024-01619-x

Keywords

Navigation