Log in

A comprehensive review on genetic resistance of chickpea to ascochyta blight

  • Review
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Chickpea (Cicer arietinum L.) is one of the most valued legumes because of its nutritional value and global cultivation in more than fifty countries. Ascochyta blight is the devastating disease that substantially reduces crop yield and creates a wide gap between its demand and production. Several approaches are utilized for disease management, but all have limited effectiveness. The key to manage this challenge is to understand and exploit the genetic resistance and develop more durable cultivars for the future. The available resistance sources provide partial resistance while high variability in the pathogen population makes chickpea prone to many races of Ascochyta. Much has been carried out to understand the genetics of ascochyta blight resistance since the last quarter of twentieth century including the identification and map** of various genomic regions associated with plant resistance. An absolute understanding of the genetic basis of chickpea resistance to Ascochyta rabiei seems highly variable depending upon the choice of chickpea genotype and A. rabiei pathotype used in the experiments. Recently a notable shift to expression studies of resistance genes has been observed but this is the least-explored aspect to date. However, the mechanism of genetic resistance is still largely unclear and a more focused and integrated approach utilizing advanced technologies is required. This review provides comprehensive insight into the genetic understanding of ascochyta blight from past to present and sheds light on challenges along with exploration of future directions. The available information in this context was reviewed critically with identification of gap points, to help the researchers to draw their own conclusions, and accordingly plan their further contribution to solve this problem at the genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW (2015) Cues from chewing insects—the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol 26:80–86

    CAS  Google Scholar 

  • Ahmad GD, Hafez A, Ashaf M (1952) Association of morphological characters with blight resistance. In: Proceedings of 4th Pakistan Science Conference. Peshawar, Pakistan Association for the Advancement of Science, pp 17–19

  • Akem C (1999) Ascochyta blight of chickpea: present status and future priorities. Int J Pest Manag 45(2):131–137

    Google Scholar 

  • Akhtar KP, Shah TM, Atta BM, Dickinson M, Hodgetts J, Khan RA, Hameed S (2009) Symptomatology, etiology, and transmission of chickpea phyllody disease in Pakistan. J Plant Pathol 91(3):649–653

    Google Scholar 

  • Anbessa Y, Taran B, Warkentin TD, Tullu A, Vandenberg A (2009) Genetic analyses and conservation of QTL for Ascochyta blight resistance in chickpea (Cicer arietinum L.). TAG. Theoretical and applied genetics. Theor Angew Genet 119(4):757–765

    CAS  Google Scholar 

  • Andam A, Azizi A, Majdi M, Abdolahzadeh J (2020) Comparative expression profile of some putative resistance genes of chickpea genotypes in response to ascomycete fungus, Ascochyta rabiei (Pass.) Labr. Br J Bot 43:123–130

    Google Scholar 

  • Armstrong-Cho C, Gossen BD (2005) Impact of glandular hair exudates on infection of chickpea by Ascochyta rabiei. Can J Bot 83(1):22–27

    Google Scholar 

  • Armstrong-Cho C, Wolf T, Chongo G, Gan Y, Hogg T, Lafond G, Banniza S (2008) The effect of carrier volume on Ascochyta blight (Ascochyta rabiei) control in chickpea. Crop Prot 27(6):1020–1030

    Google Scholar 

  • Aryamanesh N (2007) Chickpea improvement through genetic analysis and quantitative trait locus (QTL) map** of ascochyta blight resistence using wild Cicer species. University of Western Australia

  • Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Map** a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173(3):307–319

    Google Scholar 

  • Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding 121(4):281–291

    Google Scholar 

  • Austin DF, Lee M (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38(5):1296–1308

    CAS  Google Scholar 

  • Bahr L, Castelli MV, Barolo MI, Mostacero NR, Tosello ME, López SN (2016) Ascochyta blight: isolation, characterization, and development of a rapid method to detect inhibitors of the chickpea fungal pathogen Ascochyta rabiei. Fungal Biol 120(3):424–432

    CAS  Google Scholar 

  • Barve MP, Arie T, Salimath SS, Muehlbauer FJ, Peever TL (2003) Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet Biol 39(2):151–167

    CAS  Google Scholar 

  • Bhardwaj R, Sandhu JS, Kaur L, Gupta SK, Gaur PM, Varshney R (2010) Genetics of Ascochyta blight resistance in chickpea. Euphytica 171(3):337–343

    Google Scholar 

  • Bian XY, Ford R, Han TR, Coram TE, Pang ECK, Taylor PWJ (2007) Approaching chickpea quantitative trait loci conditioning resistance to Ascochyta rabiei via comparative genomics. Australas Plant Pathol 36(5):419–423

    CAS  Google Scholar 

  • Bittner-Eddy PD, Beynon JL (2001) The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol Plant Microbe Interact 14(3):416–421

    CAS  Google Scholar 

  • Broekgaarden C, Caarls L, Vos IA, Pieterse CM, Van Wees SC (2015) Ethylene: traffic controller on hormonal crossroads to defense. Plant Physiol 169(4):2371–2379

    CAS  Google Scholar 

  • Butler EJ (1919) Fungi and Disease in Plants: An Introduction to the Diseases of Field and Plantation Crops, especially those of India and the East. Nature 102:401–402

    Google Scholar 

  • Castro P, Rubio J, Madrid E, Fernández-Romero MD, Millán T, Gil J (2015) Efficiency of marker-assisted selection for Ascochyta blight in chickpea. J Agric Sci 153(1):56

    CAS  Google Scholar 

  • Cho S, Muehlbauer FJ (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64(2):57–66

    CAS  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Ascochyta blight. Theor Appl Genet 109(4):733–739

    Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2005) Constitutive expression of the Flavanone 3-hydroxylase gene related to pathotype-specific Ascochyta blight resistance in Cicer arietinum L. Physiol Mol Plant Pathol 67(2):100–107

    CAS  Google Scholar 

  • Cobos MJ, Rubio J, Strange RN, Moreno MT, Gil J, Millan T (2006) A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 149(1–2):105–111

    Google Scholar 

  • Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107(4):719–729

    CAS  Google Scholar 

  • Cook DE, Mesarich CH, Thomma BP (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563

    CAS  Google Scholar 

  • Coram TE, Pang EC (2005a) Isolation and analysis of candidate Ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66(5):192–200

    CAS  Google Scholar 

  • Coram TE, Pang EC (2005b) Isolation and analysis of candidate Ascochyta blight defence genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiol Mol Plant Pathol 66(5):201–210

    CAS  Google Scholar 

  • Coram TE, Pang EC (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4(6):647–666

    CAS  Google Scholar 

  • Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated by salicylic acid, methyl jasmonate and aminocyclopropane carboxylic acid to reveal pathways of defence-related gene regulation. Funct Plant Biol 34(1):52–64

    CAS  Google Scholar 

  • Cornels H, Ichinose Y, Barz W (2000) Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L.): accumulation in response to fungal infection and other stress factors. Plant Sci 154(1):83–88

    CAS  Google Scholar 

  • Daba K, Deokar A, Banniza S, Warkentin TD, Tar’an B (2016) QTL map** of early flowering and resistance to Ascochyta blight in chickpea. Genome 59(6):413–425

    CAS  Google Scholar 

  • Deokar A, Sagi M, Tar’an B (2019) Genome-wide SNP discovery for development of high-density genetic map and QTL map** of Ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor Appl Genet 132(6):1861–1872

    CAS  Google Scholar 

  • Deokar A, Sagi M, Daba K, Tar’an B (2019b) QTL sequencing strategy to map genomic regions associated with resistance to Ascochyta blight in chickpea. Plant Biotechnol J 17(1):275–288

    CAS  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    CAS  Google Scholar 

  • Dey SK, Singh G (1993) Resistance to Ascochyta blight in chickpea-Genetic basis. Euphytica 68(1–2):147–153

    Google Scholar 

  • Dicke M (2015) Herbivore-induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects. J Indian Inst Sci 95(1):35–42

    Google Scholar 

  • Dixon RA, **e DY, Sharma SB (2005) Proanthocyanidins–a final frontier in flavonoid research? New Phytol 165(1):9–28

    CAS  Google Scholar 

  • Eser D (1976) Heritability of some important plant characters, their relationships with plant yield and inheritance of Ascochyta blight resistance in chickpea (Cicer arietinum L.). Ankara University, Faculty of Agriculture Publications, (620)

  • Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49

    CAS  Google Scholar 

  • Flandez-Galvez H, Ades PK, Ford R, Pang ECK, Taylor PWJ (2003) QTL analysis for Ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107(7):1257–1265

    CAS  Google Scholar 

  • Flor HH (1947) Inheritance of reaction to rust in flax. J Agric Res 74(9):41

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2015) FAOSTAT statistical database: http://faostat.fao.org/

  • Gan YT, Siddique KHM, MacLeod WJ, Jayakumar P (2006) Management options for minimizing the damage by Ascochyta blight (Ascochyta rabiei) in chickpea (Cicer arietinum L.). Field Crops Res 97(2–3):121–134

    Google Scholar 

  • Gandon S (2002) Local adaptation and the geometry of host–parasite coevolution. Ecol Lett 5(2):246–256

    Google Scholar 

  • Gandon S, Michalakis Y (2020) Evolution of parasite virulence against qualitative or quantitative host resistance. Proc R Soc London B Biol Sci 267(1447):985–990

    Google Scholar 

  • Garg V, Khan AW, Kudapa H, Kale SM, Chitikineni A, Qiwei S, Kishor PK (2019) Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol J 17(5):914–931

    CAS  Google Scholar 

  • Ghangal R, Singh VK, Khemka NK, Rajkumar MS, Garg R, Jain M (2020) Updates on Genomic Resources in Chickpea for Crop Improvement. In: Jain M, Garg R (eds) Legume Genomics. Methods in Molecular Biology 2107, Humana, NY, pp 19–33

  • Ghazanfar MU, Wakil W, Sahi ST (2011) Induction of resistance in chickpea (Cicer arietinum L.) against Ascochyta rabiei by applying chemicals and plant extracts. Chil J Agric Res 71(1):52

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  Google Scholar 

  • Gould F, Kennedy GG, Johnson MT (1991) Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomol Exp Appl 58(1):1–14

    Google Scholar 

  • Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16(8):669–680

    CAS  Google Scholar 

  • Hafiz A, Ashraf M (1953) Studies on the inheritance of resistance to Mycosphaerella blight in gram. Phytopathology 43(10):580–581

    Google Scholar 

  • Hamwieh A, Imtiaz M, Hobson K, Ahmedl KS (2013) Genetic diversity of microsatellite alleles located at quantitative resistance loci for Ascochyta blight resistance in a global collection of chickpea germplasm. Phytopathol Mediterr 52(1):183–191

    Google Scholar 

  • Hanselle T, Ichinoseb Y, Barz W (2001) Biochemical and molecular biological studies on infection (Ascochyta rabiei)-induced thaumatin-like proteins from chickpea plants (Cicer arietinum L.). Z Naturforsch C 56(11–12):1095–1107

    CAS  Google Scholar 

  • Heil M (2015) Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu Rev Entomol 60:213–232

    CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  Google Scholar 

  • Ichinose Y, Tiemann K, Schwenger-Erger C, Toyoda K, Hein F, Hanselle T, Barz W (2000) Genes Expressed in Ascochyta raftiei-Inoculated Chickpea Plants and Elicited Cell Cultures as Detected by Differential cDNA-Hybridization. Z Naturforsch C 55(1–2):44–54

    CAS  Google Scholar 

  • Ilarslan H, Dolar FS (2002) Histological and ultrastructural changes in leaves and stems of resistant and susceptible chickpea cultivars to Ascochyta rabiei. J Phytopathol 150(6):340–348

    Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero JI, Millán T, Gil J (2006) Detection of two quantitative trait loci for resistance to Ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    CAS  Google Scholar 

  • Jain M, Garg R (eds) (2020) Legume Genomics. Methods in Molecular Biology. New York, Humana Press, Vol. 2107. https://doi.org/10.1007/978-1-0716-0235-5

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Yadav M (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74(5):715–729

    CAS  Google Scholar 

  • Jamil FF, Sarwar N, Sarwar M, Khan JA, Geistlinger J, Kahl G (2000) Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 57(6):243–254

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    CAS  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108(S1):S11–S26

    CAS  Google Scholar 

  • Kaiser WJ, Ramsey MD, Makkouk KM, Bretag TW, Açikgöz N, Kumar J, Nutter FW (2000) Foliar diseases of cool season food legumes and their control. Linking research and marketing opportunities for pulses in the 21st century. Springer, Dordrecht, pp 437–455

    Google Scholar 

  • Kanouni H, Taleei A, Peyghambari SA, Okhovat SM, Baum M, Abang M (2009) QTL analysis for ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. Seed Plant Improv J 25(1):109–127

    Google Scholar 

  • Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26(6):2285–2309

    CAS  Google Scholar 

  • Kottapalli P, Gaur PM, Katiyar SK, Crouch JH, Buhariwalla HK, Pande S, Gali KK (2009) Map** and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 165(1):79–88

    Google Scholar 

  • Kover PX, Caicedo AL (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 10(1):1–16

    CAS  Google Scholar 

  • Kumar K, Purayannur S, Kaladhar VC, Parida SK, Verma PK (2018) mQTL-seq and classical map** implicates the role of an AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family gene in Ascochyta blight resistance of chickpea. Plant, Cell Environ 41(9):2128–2140

    CAS  Google Scholar 

  • Kumar K, Srivastava V, Purayannur S, Kaladhar VC, Cheruvu PJ, Verma PK (2016) WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene (s). DNA Res 23(3):225–239

    CAS  Google Scholar 

  • Kusmenoglu I (1990) Ascochyta blight of chickpea: inheritance and relationship to seed size, morphological traits and isozyme variation. MS Thesis, Washington State University

  • Kwon SJ, ** HC, Lee S, Nam MH, Chung JH, Kwon SI, Park OK (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58(2):235–245

    CAS  Google Scholar 

  • Labdi M, Malhotra RS, Benzohra IE, Imtiaz M (2013) Inheritance of resistance to Ascochyta rabiei in 15 chickpea germplasm accessions. Plant Breeding 132(2):197–199

    CAS  Google Scholar 

  • Leo AE, Linde CC, Ford R (2016) Defence gene expression profiling to Ascochyta rabiei aggressiveness in chickpea. Theor Appl Genet 129(7):1333–1345

    CAS  Google Scholar 

  • Li H, Rodda M, Gnanasambandam A, Aftab M, Redden R, Hobson K, Rosewarne G, Materne M, Kaur S, Slater AT (2015) Breeding for biotic stress resistance in chickpea: progress and prospects. Euphytica 204(2):257–288

    Google Scholar 

  • Lichtenzveig J, Bonfil DJ, Zhang HB, Shtienberg D, Abbo S (2006) Map** quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet 113(7):1357–1369

    Google Scholar 

  • Liu CJ, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci 99(22):14578–14583

    CAS  Google Scholar 

  • Madrid E, Chen W, Rajesh PN, Castro P, Millán T, Gil J (2013) Allele-specific amplification for the detection of Ascochyta blight resistance in chickpea. Euphytica 189(2):183–190

    CAS  Google Scholar 

  • Madrid E, Rajesh PN, Rubio J, Gil J, Millán T, Chen W (2012) Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTL AR1 implicated in Ascochyta blight resistance in chickpea. Plant Cell Rep 31(6):1033–1042

    CAS  Google Scholar 

  • Madrid E, Seoane P, Claros MG, Barro F, Rubio J, Gil J, Millán T (2014) Genetic and physical map** of the QTL AR3 controlling blight resistance in chickpea (Cicer arietinum L). Euphytica 198(1):69–78

    CAS  Google Scholar 

  • Malik BA, Tufail M (1984) Chickpea production in Pakistan. In:  Ascochyta blight and winter-sowing of chickpeas (Saxena, MC, and Singh, KB, eds.). The Hague, The Netherlands: The Martinus Nijhoff/Dr. W. Junk Publishers, pp 229–235.

  • Mantri NL, Ford R, Coram TE, Pang EC (2010) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot 69(3):286–292

    Google Scholar 

  • Maurya R, Singh Y, Sinha M, Singh K, Mishra P, Singh SK, Verma PK (2020) Transcript profiling reveals potential regulators for oxidative stress response of a necrotrophic chickpea pathogen Ascochyta rabiei. 3 Biotech 10(3):1–14

    Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40(1):349–379

    CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7(4):1–11

    Google Scholar 

  • Merga B, Haji J (2019) Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric 5(1):1615718

    Google Scholar 

  • Millan T, Clarke HJ, Siddique KH, Buhariwalla HK, Gaur PM, Kumar J, Gil J, Kahl G, Winter P (2006) Chickpea molecular breeding: new tools and concepts. Euphytica 147(1–2):81–103

    Google Scholar 

  • Millan T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crop Res 84(3):373–384

    Google Scholar 

  • Narayanasamy P (2008) Genetic resistance of crops to diseases. Molecular biology in plant pathogenesis and disease management. Springer, Dordrecht, pp 23–170

    Google Scholar 

  • Nene YL (1982) A review of Ascochyta blight of chickpea. Int J Pest Manag 28(1):61–70

    Google Scholar 

  • Overkamp S, Hein F, Barz W (2000) Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci 155(1):101–108

    CAS  Google Scholar 

  • Pal M, Kumar SPRJ, Singh B (1999) Genetics of resistance to Ascochyta blight in chickpea. Indian Phytopathol 52(4):403–407

    Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Aust J Agric Res 56(4):317–332

    Google Scholar 

  • Pandey BK, Singh US, Chaube HS (1987) Mode of infection of Ascochyta blight of chickpea caused by Ascochyta rabiei. J Phytopathol 119(1):88–93

    Google Scholar 

  • Pantelides IS, Tjamos SE, Pappa S, Kargakis M, Paplomatas EJ (2013) The ethylene receptor ETR 1 is required for Fusarium oxysporum pathogenicity. Plant Pathol 62(6):1302–1309

    CAS  Google Scholar 

  • Peever TL, Salimath SS, Su G, Kaiser WJ, Muehlbauer FJ (2004) Historical and contemporary multilocus population structure of Ascochyta rabiei (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States. Mol Ecol 13(2):291–309

    CAS  Google Scholar 

  • Pieters R, Tahiri A (1986) Breeding chickpea for horizontal resistance to Ascochyta blight in Morocco. FAO Plant Prot Bull 34:99–105

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  Google Scholar 

  • Raina A, Khan S, Wani MR, Laskar RA, Mushtaq W (2019) Chickpea (Cicer arietinum L.) Cytogenetics, Genetic Diversity and Breeding. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in Plant Breeding Strategies: Legumes. Springer, Cham, pp 53–112. https://doi.org/10.1007/978-3-030-23400-3_3

  • Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz EJ, Salvi G, Bellincampi D (2011) Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol Plant Microbe Interact 24(4):432–440

    CAS  Google Scholar 

  • Rakshit S, Winter PP, Tekeoglu M, Munoz JJ, Pfaff T, Benko-Iseppon AM, Kahl G (2003) DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132(1):23–30

    CAS  Google Scholar 

  • Reddy MV, Kabbabeh S (1985) Pathogenic variability in Ascochyta rabiei (Pass.) Lab. in Syria and Lebanon. Phytopathol Mediterr 24(3):265–266

    Google Scholar 

  • Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Varshney RK (2013) Molecular map** of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193(1):121–133

    Google Scholar 

  • Sagi MS, Deokar AA, Tar’an B (2017) Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to Ascochyta blight infection. Front Plant Sci 8:838

    Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and map** of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci 40(6):1606–1612

    CAS  Google Scholar 

  • Sarwar N, Akhtar KP, Shah TM, Atta BM (2012) Evaluation of chickpea advance genotypes against blight and wilt diseases under field conditions. Int J Agric Biol 14(6)

  • Sattar A (1933) On the occurrence, perpetuation and control of gram (Cicer arietinum L.) blight caused by Ascochyta rabiei (Pass.) Labrousse, with special reference to Indian conditions. Ann Appl Biol 20(4):612–632

    Google Scholar 

  • Shahid AA, Husnain T, Riazuddin S (2008) Ascochyta blight of chickpea: Production of phytotoxins and disease management. Biotechnol Adv 26(6):511–515

    CAS  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlap** and non-overlap** signalling roles in a receptor family. AoB plants 5

  • Sharma M, Ghosh R (2016) An update on genetic resistance of chickpea to Ascochyta blight. Agronomy 6(1):18

    Google Scholar 

  • Siddique KHM, Brinsmead RB, Knight R, Knights EJ, Paull JG, Rose IA (2000) Adaptation of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) to Australia. In Knight R (eds) Linking Research and Marketing Opportunities for Pulses in the 21st Century. Current Plant Science and Biotechnology in Agriculture, vol 34. Springer, Dordrecht

  • Singh KB, Reddy MV (1983) Inheritance of Resistance to Ascochyta Blight in Chickpea. Crop Sci 23(1):9–10

    Google Scholar 

  • Singh KB, Reddy MV (1991) Advances in disease-resistance breeding in chickpea. Adv Agron 45:191–222

    Google Scholar 

  • Singh PJ, Pal M, Prakash N (1997) Ultrastructural Studies of conidiogenesis ofAscochyta rabiei, the causal Organism of chickpea blight. Phytoparasitica 25(4):291

    Google Scholar 

  • Stephens A, Lombardi M, Cogan NO, Forster JW, Hobson K, Materne M, Kaur S (2014) Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of Ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol Breed 33(2):297–313

    CAS  Google Scholar 

  • Sun H, Song N, Ma L, Li J, Ma L, Wu J, Wu J (2016) Ethylene signalling is essential for the resistance of Nicotiana attenuate against Alternaria alternate and phytoalexin scopoletin biosynthesis. Plant Pathol 66(2):277–284

    Google Scholar 

  • Suzuki F, Konno S (1982) Regional report on grain legumes production in Asia. In Symposium on Grain Legumes Production, Chiang Mai (Thailand), Nov 1980. APO

  • Taleei A, Kanouni H, Baum M (2009) Genetical analysis of Ascochyta blight resistance in chickpea. International Conference on Bio-Science and Bio-Technology. Springer, Berlin, Heidelberg, pp 31–37

    Google Scholar 

  • Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic map** of Ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50(1):26–34

    Google Scholar 

  • Tekeoglu M, Rajesh P, Muehlbauer F (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105(6–7):847–854

    CAS  Google Scholar 

  • Tekeoglu M, Santra DK, Kaiser WJ, Muehlbauer FJ (2000) Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Sci 40(5):1251–1256

    Google Scholar 

  • Tewari SK, Pandey MP (1996) Genetics of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 35(1):211–215

    Google Scholar 

  • Tivoli B, Banniza S (2007) Comparison of the epidemiology of Ascochyta blights on grain legumes. In: Tivoli B, Baranger A, Muehlbauer FJ, Cooke BM (eds) Ascochyta blights of grain legumes. Springer, Dordrecht, pp 59–76

    Google Scholar 

  • Türkkan M, Dolar FS (2009) Determination of pathogenic variability of Didymella rabiei, the agent of Ascochyta blight of chickpea in Turkey. Turk J Agric for 33(6):585–591

    Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to Ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106(7):1196–1202

    CAS  Google Scholar 

  • Van der Maesen LJG (1987) Origin, history and taxonomy of chickpea. In: Saxena MC, Singh RB (eds) The chickpea. CABI, Wallingford, UK, pp 11–34

    Google Scholar 

  • Varshney RK, Kudapa H (2013) Legume biology: the basis for crop improvement. Funct Plant Biol 40(12):5–8

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240–246

    CAS  Google Scholar 

  • Verma MM, Brar HS, Singh G, Nene YL, Gill AS, Sandhu TS (1987) In: Gill KS, Khehra AS, Verma MM, Virk DS (eds) Status of breeding for resistance to Ascochyta blight of chickpea in India. Proc. First Symp. on Crop Improvement. Punjab Agricultural University, Ludhiana, 23–27, pp 441–450

  • Vir S, Grewal JS (1974) Physiological specialization in Ascochyta rabiei, the causal organism of gram blight. Indian Phytopathology 27:209–211

    Google Scholar 

  • Vir S, Grewal JS, Gupta VP (1975) Inheritance of resistance to Ascochyta blight in chickpea. Euphytica 24(1):209–211

    Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146(3):859–866

    CAS  Google Scholar 

  • Warren RF, Merritt PM, Holub E, Innes RW (1999) Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152(1):401–412

    CAS  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Rajesh PN (2020) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum× C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101(7):1155–1163

    Google Scholar 

  • Wise KA, Bradley CA, Pasche JS, Gudmestad NC, Dugan FM, Chen W (2008) Baseline sensitivity of Ascochyta rabiei to azoxystrobin, pyraclostrobin, and boscalid. Plant Dis 92(2):295–300

    CAS  Google Scholar 

  • Wood JA, Grusak MA (2007) Nutritional value of chickpea. In: Yadav SS, Redden B, Chen W, Sharma B (eds) Chickpea Breeding and Management. CAB International, Wallingford, pp 101–142

    Google Scholar 

  • Yadav SK, Yadav S, Kumar PR, Kant K (2005) A critical overview of chickpea seed technological research. Seed Res New Delhi 33(1):1

    Google Scholar 

  • Zhan J, Mundt CC, Hoffer ME, McDonald BA (2002) Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. J Evol Biol 15(4):634–647

    Google Scholar 

  • Zhou Z, Bar I, Sambasivam PT, Ford R (2019) Determination of the key resistance gene analogs involved in Ascochyta rabiei recognition in chickpea. Front Plant Sci 10:644

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley (No. Ed. 3). Oxford University Press, p 249

Download references

Acknowledgements

We are highly grateful to Miss Katharine Dorpman for critically revising this article for language improvement and grammatical errors. Many thanks to Attiq ur Rehman to help in preparation of manuscript and the anonymous reviewers for their suggestions to improve this article into its present form.

Funding

No funds, grants, or other support were received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AmI originally came up with the idea of the article and wrote the manuscript. SAM, KH, and AyI substantially contributed to literature review, drafting and formatting. SAM and KS critically revised the manuscript and SAM provided the supervisory support.

Corresponding author

Correspondence to Amina Ilyas.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or performed on animals by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, A., Mirza, S.A., Hussain, K. et al. A comprehensive review on genetic resistance of chickpea to ascochyta blight. J Plant Pathol 104, 1337–1354 (2022). https://doi.org/10.1007/s42161-022-01232-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-022-01232-w

Keywords

Navigation