Log in

Electrochemically synthesized Tin micro-nanometer powders for visible light photocatalytic degradation of Rhodamine B dye from polluted water

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Tin (Sn) micro-nanoparticles with special pine tree dendritic morphology were synthesized by using tin foil as the anode and titanium as the cathode through simple anodization method. Surprisingly, it is found that the morphology of Sn particles is closely related to factors such as the type of electrolyte, the concentration of the electrolyte, and the different applied voltages, and briefly discussed the influence of various factors on the growth of Sn particles. In addition, Sn particles are calcined under different temperature conditions to obtain Sn/SnO2 hybrid materials with different tin dioxide (SnO2) contents. The changes in morphology and the phase of SnO2 crystal lattices were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively, which proved the successful synthesis of Sn/SnO2 mixed materials. Finally, the Sn/SnO2 hybrid material with metal-doped modified semiconductor properties was used to photocatalytic degradation of simulated organic pollutants rhodamine B (RhB). It was found that the photocatalytic degradation efficiency of the Sn/SnO2 hybrid material under simulated sunlight conditions is near 90% in 5 h. Therefore, this work provides a convenient and effective environmental protection approach for the treatment of architecture and industrial dyes.

Graphical Abstract

Tin (Sn) micro-nanoparticles with special pine tree dendritic morphology are synthesized through simple anodization method, and the final product Sn/SnO2 particles after different heat treatments show superior photocatalytic degradation of RhB under simulated solar light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Bhat M, MR A, SV M, Das S, Roymahapatra G (2023) Photocatalytic degradation of dyes by titania/ferric oxide/polyvinyl alcohol nanocomposites. ES Gen 2:981. https://doi.org/10.30919/esg981

  2. Kumar A, Singh M, Bhatt N, Jayaswal P, Sethi M, Burcar E, Wang Z  (2024) The perils of heavy metal contamination in groundwater: impacts on human health in the northeastern region of Jhunjhunu, Rajasthan. ES Food Agrofor 6:1079. https://doi.org/10.30919/esfaf1079

  3. Hou K, Xu X, **ang Y, Chen X, Lam SS, Naushad M, Sonne C, Ge S (2023) Rapid uptake of gold ions by sulfonated humic acid modified phenolic resin with high adsorption capacity and selectivity. Adv Compos Hybrid Mater 6:77. https://doi.org/10.1007/s42114-023-00647-y

    Article  CAS  Google Scholar 

  4. Zhang H, Wang Z, Zhao Y, Cui W, Zhang X, Wang S, Walter ED, Sassi MJ, Pearce CI, Clark SB, Rosso KM (2023) Metal ion (Cr3+, Eu3+, UO22+) adsorption on gibbsite nanoplates. Eng Sci 4:896. https://doi.org/10.30919/es896

  5. Balasubramaniyan S, Khan HA, Swaminathan M (2023) Microbial and solar photocatalytic degradation of pyridine. ES Energy Environ 22:971. https://doi.org/10.30919/esee971

  6. Jasmine J, Ponvel KM (2023) Synthesis of Ag2CdS2/carbon nanocomposites for effective solar-driven ddye photodegradation and electrochemical application. ES Energy Environ 20:898. https://doi.org/10.30919/esee898

  7. Ansari MZ, Ansari SA, Kim S-H (2022) Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review. J Energy Storage 53:105187. https://doi.org/10.1016/j.est.2022.105187

    Article  Google Scholar 

  8. Shelke HD, Mohite AA, Torane AP, Madhale KV, Lokh CD (2022) Effect of Cu4SnS4 Layer Thickness on the Photovoltaic Parameters of Photoelectrochemical Solar Cells. ES Materi. Manuf 18:66–76. https://doi.org/10.30919/esmm5f724

    Article  CAS  Google Scholar 

  9. Ahmad I, Idress A, Assiri MA, Ahmed SB, Shaban M, Ghadi YY (2023) Sn-based materials in photocatalysis: A review. Adv Colloid Interface Sci 321:103032. https://doi.org/10.1016/j.surfcoat.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  10. Le Caër G, Matteazzi P, Fultz B (1992) A microstructural study of mechanical alloying of Fe and Sn powders. J Mater Res 7:1387–1395. https://doi.org/10.1557/JMR.1992.1387

    Article  Google Scholar 

  11. **aohui W, Zhiliang L, Jie Z, **ngguo L, Zu** S (2017) Arc-discharge synthesis of dual-carbonaceous-layer-coated tin nanoparticles with tunable structures and high reversible lithium storage capacity. J Mater Chem A 5:13769–13775. https://doi.org/10.1039/C7TA03323K

    Article  Google Scholar 

  12. Zaikovskii A, Novopashin S, Maltsev V, Kardash T, Shundrina I (2019) Tin–carbon nanomaterial formation in a helium atmosphere during arc-discharge. RSC Adv 9:36621–36630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pintar A, Batista J, Muševič I (2004) Palladium-copper and palladium-tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor. Appl Catal B 52:49–60. https://doi.org/10.1039/C9RA05485E

    Article  CAS  Google Scholar 

  14. Deb NK, Kalita K, Giri PK, Abhilash S, Umapathy G, Biswas R, Das A, Kabiraj D, Chopra S, Bhuyan M (2020) Carbon-backed thin tin (116Sn) isotope target fabrication by physical vapor deposition technique. J Radioanal Nucl Chem 326:97–104. https://doi.org/10.1007/s10967-020-07316-0

    Article  CAS  Google Scholar 

  15. Meléndrez M, Cárdenas G, Díaz VJ, Cruzat CC, Arbiol J (2009) Synthesis and aggregation study of tin nanoparticles and colloids obtained by chemical liquid deposition. Colloid Polym Sci 287:13–22. https://doi.org/10.1007/s00396-008-1950-7

    Article  CAS  Google Scholar 

  16. Rozovskis G, Mockus Z, Pautienien V, Survila A (2002) Electrochemical determination of Sn (IV)/Sn(II) ratio in tin sol formed in copper–tin sulphate solution containing laprol 2402C. Electrochem commun 4:76–79. https://doi.org/10.1016/S1388-2481(01)00277-6

    Article  CAS  Google Scholar 

  17. Poinern GE, Ng Y-J, Fawcett D (2010) Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique. J Colloid Interf Sci 352:259–264. https://doi.org/10.1016/j.jcis.2010.08.085

    Article  CAS  Google Scholar 

  18. Chee S-S, Lee J-H (2014) Synthesis of sub-10-nm Sn nanoparticles from Sn(II) 2-ethylhexanoate by a modified polyol process and preparation of AgSn film by melting of the Sn nanoparticles. Thin Solid Films 562:211–217. https://doi.org/10.1016/j.tsf.2014.04.061

    Article  CAS  Google Scholar 

  19. Chaudhari Y, Tarkas H, Tak S, Punde A, Shah S, Rahane S, Waghmare A, Hase Y, Sali J, Jadkar S (2022) Influence of Mixed-solvent System and Reaction Temperature on In situ, Surfactant-free Synthesis of P3HT:SnS Nanocomposites. ES Mater Manuf 18:45–55. https://doi.org/10.30919/esmm5f726

    Article  CAS  Google Scholar 

  20. Biswas S, Doherty J, Saladukha D, Ramasse Q, Majumdar D, Upmanyu M, Singha A, Ochalski T, Morris MA, Holmes JD (2016) Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires. Nat commun 7:1–12. https://doi.org/10.1038/ncomms11405

    Article  CAS  Google Scholar 

  21. Brumbach M, Veneman PA, Marrikar FS, Schulmeyer T, Simmonds A, **a W, Lee P, Armstrong NR (2007) Surface composition and electrical and electrochemical properties of freshly deposited and acid-etched indium tin oxide electrodes. Langmuir 23:11089–11099. https://doi.org/10.1021/la701754u

    Article  CAS  PubMed  Google Scholar 

  22. Brande PV, Weymeersch A (2000) Steel coating by self-induced ion plating, a new high throughput metallization ion plating technique. J Vac Sci Technol 18:1555–1560. https://doi.org/10.1116/1.582384

    Article  Google Scholar 

  23. Veeraraghavan B, Durairajan A, Haran B, Popov B, Guidotti R (2002) Study of Sn-coated graphite as anode material for secondary lithium-ion batteries. J Electrochem Soc 149:A675. https://doi.org/10.1149/1.1470653

    Article  CAS  Google Scholar 

  24. Rokade A, Tarkas H, Rokade A, Waman V, Upasani D, Sali JV, Jadkar SR (2023) Effect of Incorporation of SnS Nanorods on the Growth Mechanism, Crystallinity, Optoelectronic Performance, and Stability of CH3NH3PbI3 Perovskite Active Layer. ES Mater. Manuf. 22:937. https://doi.org/10.30919/esmm937

    Article  CAS  Google Scholar 

  25. Kadam V, Jagtap C, Kumkale V, Rednam U, Lokhande P, Pathan H (2024) Photocatalytic degradation of rose bengal dye using chemically synthesized pristine and molybdenum doped zinc oxide. Eng Sci 8:1077. https://doi.org/10.30919/es1077

  26. Sagadevan S, Lett JA, Weldegebrieal GK, Imteyaz S, Johan MR (2021) Synthesis, characterization, and photocatalytic activity of PPy/SnO2 nanocomposite. Chem Phys Lett 783:139051. https://doi.org/10.1016/j.cplett.2021.139051

    Article  CAS  Google Scholar 

  27. Arif HS, Murtaza G, Hanif H, Ali HS, Yaseen M, Khalid N (2017) Effect of La on structural and photocatalytic activity of SnO2 nanoparticles under UV irradiation. J Environ Chem Eng 5:3844–3851. https://doi.org/10.1016/j.jece.2017.07.043

    Article  CAS  Google Scholar 

  28. Abdelkader E, Nadjia L, Naceur B, Noureddine B (2016) SnO2 foam grain-shaped nanoparticles: Synthesis, characterization and UVA light induced photocatalysis. J Alloy Compound 679:408–419. https://doi.org/10.1016/j.jallcom.2016.04.016

    Article  CAS  Google Scholar 

  29. Dhanalakshmi M, Saravanakumar K, Prabavathi SL, Abinaya M, Muthuraj V (2018) Fabrication of novel surface plasmon resonance induced visible light driven iridium decorated SnO2 nanorods for degradation of organic contaminants. J Alloy Compound 763:512–524. https://doi.org/10.1016/j.jallcom.2018.05.340

    Article  CAS  Google Scholar 

  30. Li X, Yan J, Zhu K (2021) Fabrication and Characterization of Pt doped Ti/Sb-SnO2 Electrode and its Efficient Electro-Catalytic Activity toward Phenol. Eng. Sci 15:38–46. https://doi.org/10.30919/es8d432

    Article  CAS  Google Scholar 

  31. Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM (2015) Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta Part A 145:176–180. https://doi.org/10.1016/j.saa.2015.03.033

    Article  CAS  Google Scholar 

  32. Drouiche N, Aoudj S, Hecini M, Ghaffour N, Lounici H, Mameri N (2009) Study on the treatment of photovoltaic wastewater using electrocoagulation: Fluoride removal with aluminium electrodes—Characteristics of products. J Hazard Mater 169:65–69. https://doi.org/10.1016/j.jhazmat.2009.03.073

    Article  CAS  PubMed  Google Scholar 

  33. Allam NK, Grimes CA (2011) Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater Lett 65:1949–1955. https://doi.org/10.1016/j.matlet.2011.03.105

    Article  CAS  Google Scholar 

  34. Deen K, Farooq A, Raza M, Haider W (2014) Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation. Electrochim Acta 117:329–335. https://doi.org/10.1016/j.electacta.2013.11.108

    Article  CAS  Google Scholar 

  35. Su JF, Kuan W-F, Liu H, Huang C (2019) Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity. Appl Catal B: Environ 257:117909. https://doi.org/10.1016/j.apcatb.2019.117909

    Article  CAS  Google Scholar 

  36. Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J (2020) Electrochemical deposition of metal–organic framework films and their applications. J Mater Chem A 8:7569–7587. https://doi.org/10.1039/D0TA00406E

    Article  CAS  Google Scholar 

  37. McKaveney JP, Byrnes C (1970) Apparatus using semiconductor electrodes for the measurement of acid concentrations. Anal Chem 42:1023–1028. https://doi.org/10.1021/ac60291a018

    Article  CAS  Google Scholar 

  38. Han Z, Niu Y, Shi X, Pan D, Liu H, Qiu H, Chen W, Xu BB, El-Bahy ZM, Hou H, Elsharkawy ER, Amin MA, Liu C, Guo Z (2024) MXene@c-MWCNT adhesive silica nanofiber membranes enhancing electromagnetic interference shielding and thermal insulation performance in extreme environments. Nano-Micro Lett 16:195. https://doi.org/10.1007/s40820-024-01398-1

    Article  CAS  Google Scholar 

  39. Sun B, Zhou G, Zhang Y, Liu R, Li T (2015) Photocatalytic properties of exposed crystal surface-controlled rutile TiO2 nanorod assembled microspheres. Chem Eng J 264:125–133. https://doi.org/10.1016/j.cej.2014.11.070

    Article  CAS  Google Scholar 

  40. Pan D, Ge S, Zhao J, Shao Q, Guo L, Zhang X, Lin J, Xu G, Guo Z (2018) Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans 47:9765–9778. https://doi.org/10.1039/C8DT01045E

    Article  CAS  PubMed  Google Scholar 

  41. Gu Y, Pan Z, Zhang H, Zhu J, Yuan B, Pan D, Wu C, Dong B, Guo Z (2020) Synthesis of high performance diesel oxidation catalyst using novel mesoporous AlLaZrTiOx mixed oxides by a modified sol-gel method. Adv Compos Hybrid Mater 3:583–593. https://doi.org/10.1007/s42114-020-00193-x

    Article  CAS  Google Scholar 

  42. Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y (2013) A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J Mater Chem A 1:7181–7184. https://doi.org/10.1039/C3TA10920H

    Article  CAS  Google Scholar 

  43. Wu L, Lu H, **ao L, Qian J, Ai X, Yang H, Cao Y (2014) A tin (ii) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J Mater Chem A 2:16424–16428. https://doi.org/10.1039/C4TA03365E

    Article  CAS  Google Scholar 

  44. Zhang N, Zhao Q, Han X, Yang J, Chen J (2014) Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale 6:2827–2832. https://doi.org/10.1039/C3NR05523J

    Article  CAS  PubMed  Google Scholar 

  45. Guo Y, Tan R, Li Y, Song W (2012) Solution route to SnO2 crystals with controllable morphology. Appl Surf Sci 258:1958–1963. https://doi.org/10.1016/j.apsusc.2011.06.037

    Article  CAS  Google Scholar 

  46. Wang WW, Zhu YJ, Yang LX (2007) ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv Funct Mater 17:59–64. https://doi.org/10.1002/adfm.200600431

    Article  CAS  Google Scholar 

  47. Cheng B, Russell JM, Shi W, Zhang L, Samulski ET (2004) Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc 126:5972–5973. https://doi.org/10.1021/ja0493244

    Article  CAS  PubMed  Google Scholar 

  48. Derikvandi H, Nezamzadeh-Ejhieh A (2017) Synergistic effect of pn heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J Colloid Interf Sci 490:314–327. https://doi.org/10.1016/j.jcis.2016.11.069

    Article  CAS  Google Scholar 

  49. Kim SP, Choi MY, Choi HC (2016) Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull 74:85–89. https://doi.org/10.1016/j.materresbull.2015.10.024

    Article  CAS  Google Scholar 

  50. Kawade AN, Bhujbal PK, Supekar AT, Sonawane KM, Pathan HM, Shaikh SF, Al-Kaitani AAA (2021) Comparative Study of Eosin-Y and Rose Bengal Sensitized SnO2-ZnO Composite Electrode for Dye-Sensitized Solar Cell. ES Energy Environ 14:73–78. https://doi.org/10.30919/esee8c495

    Article  CAS  Google Scholar 

  51. Roy S, Luitel H, Sanyal D (2019) Magnetic properties of transition metal doped SnO2: A detailed theoretical study. Computat Condens Matte 21:e00393. https://doi.org/10.1016/j.cocom.2019.e00393

    Article  Google Scholar 

  52. Soitah TN, Yang C, Sun L (2010) Structural, optical and electrical properties of Fe-doped SnO2 fabricated by sol–gel dip coating technique. Mat Sci Semicon Proc 13:125–131. https://doi.org/10.1016/j.mssp.2010.03.002

    Article  CAS  Google Scholar 

  53. Pan D, Ge S, Zhao J, Tian J, Shao Q, Guo L, Mai X, Wu T, Murugadoss V, Liu H (2018) Synthesis and characterization of ZnNiIn layered double hydroxides derived mixed metal oxides with highly efficient photoelectrocatalytic activities. Ind Eng Chem Res 58:836–848. https://doi.org/10.1021/acs.iecr.8b04829

    Article  CAS  Google Scholar 

  54. Kumar R, Umar A, Kumar R, Chauhan M, Kumar G, Chauhan S (2021) Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye. Eng. Sci 16:288–300. https://doi.org/10.30919/es8d548

    Article  CAS  Google Scholar 

  55. Zhang F, Cheng W, Yu Z, Ge S, Shao Q, Pan D, Liu B, Wang X, Guo Z (2021) Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. Adv Compos Hybrid Mater 4:1330–1342. https://doi.org/10.1007/s42114-021-00346-6

    Article  CAS  Google Scholar 

  56. Sun Z, Zhang Y, Guo S, Shi J, Shi C, Qu K, Qi H, Huang Z, Murugadoss V, Huang M, Guo Z (2022) Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment. Adv Compos Hybrid Mater 5:1566–1581. https://doi.org/10.1007/s42114-022-00477-4

    Article  CAS  Google Scholar 

  57. Xu Z, Yu J (2011) Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale 3:3138–3144. https://doi.org/10.1039/C1NR10282F

    Article  CAS  PubMed  Google Scholar 

  58. Huang K, Zhang Q, Yang F, He D (2010) Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res 3:281–287. https://doi.org/10.1007/s12274-010-1031-3

    Article  CAS  Google Scholar 

  59. Shinde DR, Quraishi IS, Pawar RA (2021) An efficient visible light driven photocatalytic removal of dyes from the dye effluent using metal halide lamp based slurry reactor. ES Energy Environ 14:54–62. https://doi.org/10.30919/esee8c504

    Article  CAS  Google Scholar 

  60. Pan D, Ge S, Zhang X, Mai X, Li S, Guo Z (2018) Synthesis and photoelectrocatalytic activity of In2O3 hollow microspheres via a bio-template route using yeast templates. Dalton Trans 47:708–715. https://doi.org/10.1039/C7DT03878J

    Article  CAS  PubMed  Google Scholar 

  61. Khan SH, Pathak B, Fulekar MH (2020) A study on the influence of metal (Fe, Bi, and Ag) do** on structural, optical, and antimicrobial activity of ZnO nanostructures. Adv Compos Hybrid Mater 3:551–569. https://doi.org/10.1007/s42114-020-00174-0

    Article  CAS  Google Scholar 

  62. Sun D, Jang S, Yim SJ, Ye L, Kim DP (2018) Metal Doped Core-Shell Metal-Organic Frameworks@ Covalent Organic Frameworks (MOFs@COFs) Hybrids as a Novel Photocatalytic Platform. Adv Funct Mater 28:1707110. https://doi.org/10.1002/adfm.201707110

    Article  CAS  Google Scholar 

  63. Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B: Environ 101:382–387. https://doi.org/10.1016/j.apcatb.2010.10.007

    Article  CAS  Google Scholar 

  64. Wang W-L, Wu Q-Y, Huang N, Xu Z-B, Lee M-Y, Hu H-Y (2018) Potential risks from UV/H2O2 oxidation and UV photocatalysis: a review of toxic, assimilable, and sensory-unpleasant transformation products. Water Res 141:109–125. https://doi.org/10.1016/j.watres.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  65. Song Y, Tian J, Gao S, Shao P, Qi J, Cui F (2017) Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: effectiveness, mechanism and pathways. Appl Catal B: Environ 210:88–96. https://doi.org/10.1016/j.apcatb.2017.03.059

    Article  CAS  Google Scholar 

  66. **e K, Wei S, Alhadhrami A, Liu J, Zhang P, Elnaggar AY, Zhang F, Mahmoud MHH, Murugadoss V, El-Bahy SM, Wang F, Li C, Li G (2022) Synthesis of CsPbBr3/CsPb2Br5@silica yolk-shell composite microspheres: precisely controllable structure and improved catalytic activity for dye degradation. Adv Compos Hybrid Mater 5:1423–1432. https://doi.org/10.1007/s42114-022-00520-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Taif University, Saudi Arabia for supporting this work through project number (TU-DSPP-2024-01).

Funding

The research was funded by Taif University, Taif, Saudi Arabia (TU-DSPP-2024-01).

Author information

Authors and Affiliations

Authors

Contributions

Yukun Lu prepared the materials and conducted most of the measurements and data analysis. Yaojie Zhang and Jiale Zhang contributed to the data analysis. Zhaoyang Li, Feiyang Hu and Duo Pan conceived the idea, wrote the paper, and coordinated the overall project. Saad Melhi and Xuetao Shi revised the paper. Mohammed A. Amin provided supervision and resources. Zeinhom M. El-Bahy reviewed and revised the manuscript. Qian Shao revised the manuscript and coordinated the overall project. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhaoyang Li, Feiyang Hu or Duo Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, Y., Zhang, J. et al. Electrochemically synthesized Tin micro-nanometer powders for visible light photocatalytic degradation of Rhodamine B dye from polluted water. Adv Compos Hybrid Mater 7, 110 (2024). https://doi.org/10.1007/s42114-024-00921-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00921-7

Keyword

Navigation