Log in

Hydration, fresh, mechanical, and freeze-thaw properties of cement mortar incorporated with polymeric microspheres

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Air-entraining agent (AEA) has been used for decades to improve cementitious materials’ freezing–thawing resistance. However, the strength reduction and durability degradation concerns associated with using AEA make it a double-edged sword. Hollow polymeric microspheres have proved to be a promising solution to help concrete resist freezing–thawing attacks by means of encapsulated air without sacrificing mechanical performance or durability properties. In this study, the hydration, fresh properties, hardening performance, freezing–thawing resistance, and pore structure of cement mortar with the addition of AEA and thermo-expansible polymeric microspheres were studied. The properties of cement mortar with different dosages of AEA and microspheres were examined, and the mechanism behind the performance was also addressed. It was found that the used microspheres have an “internal curing” effect, improving cement mortar’s hydration, workability, and mechanical strength compared with plain mortar and AEA mixed mortar. The small size and compressible properties of the microspheres also contributed to cement mortar’s freezing–thawing resistance. For 1.5% and 2.0% of dosages (by the mass of cement), after 56 days of freezing–thawing cycles, the compressive strength improved 10.99% and 17.90%, respectively, and the tensile strength increased by 11.24% and 32.73%, respectively, and the flexural strength increased 6.58% and 5.79%, respectively. Adding microspheres and AEA in cement mortar significantly improved the content of permeable pores larger than 50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Gagné R (2016) Air entraining agents. In: Sci. Technol. Concr. Admixtures, Elsevier, pp. 379–391. https://doi.org/10.1016/B978-0-08-100693-1.00017-5

  2. Huang C, Su YF, Baah P, Nantung T, Lu N (2022) Investigation of medium-term self-healing performance of strain-hardening cementitious composites incorporated with colloidal nano silica. Constr Build Mater 348:128687. https://doi.org/10.1016/J.CONBUILDMAT.2022.128687

    Article  CAS  Google Scholar 

  3. Pigeon M (2014) Durability of concrete in Cold climates. CRC, London. https://doi.org/10.1201/9781482271447

    Book  Google Scholar 

  4. Huang C, Su Y-F, Tokpatayeva R, Nantung T, Lu N (2022) Investigation of Internal Curing Efficacy of Portland Cement Concrete incorporated with Colloidal Nano Silica. ES Mater Manuf. https://doi.org/10.30919/esmm5f798

    Article  Google Scholar 

  5. Tunstall LE, Ley MT, Scherer GW (2021) Air entraining admixtures: mechanisms, evaluations, and interactions. Cem Concr Res 150:106557. https://doi.org/10.1016/J.CEMCONRES.2021.106557

    Article  CAS  Google Scholar 

  6. Marchon D, Flatt RJ (2016) Impact of chemical admixtures on cement hydration. In: Sci. Technol. Concr. Admixtures, Elsevier, pp. 279–304. https://doi.org/10.1016/B978-0-08-100693-1.00012-6

  7. Van Den Heede P, Furniere J, De Belie N (2013) Influence of air entraining agents on deicing salt scaling resistance and transport properties of high-volume fly ash concrete. Cem Concr Compos 37:293–303. https://doi.org/10.1016/J.CEMCONCOMP.2013.01.005

    Article  Google Scholar 

  8. Quan H (2011) The effects of change in fineness of fly ash on air-entraining concrete, open Civ. Eng J 5:124–131. https://doi.org/10.2174/1874149501105010124

    Article  Google Scholar 

  9. Mayafield A, Moreton B (1969) Effect of fineness of cement on the air-entraining properties of concrete, Civ. Eng. Public Work Rev. 64 37. https://trid.trb.org/view/95999 (accessed January 6, 2023)

  10. Quan HZ, Kasami H (2010) Effects of change in fineness of fly ash on air-entrained concrete. Adv Mater Res 168–170 2195–2199. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2195

  11. Marchon D, Mantellato S, Eberhardt AB, Flatt RJ (2016) Adsorption of chemical admixtures. In: Sci. Technol. Concr. Admixtures, Elsevier, : pp. 219–256. https://doi.org/10.1016/B978-0-08-100693-1.00010-2

  12. Smaoui N, Bérubé MA, Fournier B, Bissonnette B, Durand B (2005) Effects of alkali addition on the mechanical properties and durability of concrete. Cem. Concr. Res. 35:203–212. https://doi.org/10.1016/j.cemconres.2004.05.007

    Article  CAS  Google Scholar 

  13. Plante P, Pigeon M, Saucier F, Stability A-V, Part II (1989) Influence of Superplasticizers and Cement. ACI Mater J 86:581–589. https://doi.org/10.14359/2233

    Article  CAS  Google Scholar 

  14. Zhang DS (1996) Air Entrainment in fresh concrete with PFA. Cem Concr Compos 18:409–416. https://doi.org/10.1016/S0958-9465(96)00033-9

    Article  CAS  Google Scholar 

  15. Saric-Coric M, Aïtcin P-C (2003) Bétons à haute performance à base de ciments composés contenant du laitier et de la fumée de silice. Can J Civ Eng 30:414–428. https://doi.org/10.1139/l03-005

    Article  CAS  Google Scholar 

  16. Dean SW, Lomboy G, Wang K (2009) Effects of Strength, Permeability, and Air Void parameters on freezing-thawing resistance of concrete with and without Air Entrainment. J ASTM Int 6:102454. https://doi.org/10.1520/JAI102454

    Article  Google Scholar 

  17. Güleryüz E, Özen S, Mardani-Aghabaglou A (2020) Effect of utilization of mineral admixture on the fresh and hardened properties of air-entrained cement mortars, Pamukkale Univ. J Eng Sci 26:1053–1061. https://doi.org/10.5505/pajes.2020.85353

    Article  Google Scholar 

  18. Choi P, Yeon JH, Yun K-K (2016) Air-void structure, strength, and permeability of wet-mix shotcrete before and after shotcreting operation: the influences of silica fume and air-entraining agent. Cem Concr Compos 70:69–77. https://doi.org/10.1016/j.cemconcomp.2016.03.012

    Article  CAS  Google Scholar 

  19. Zhu J, Wang Z,  Li Y,  Li Z (2018) Effect of air entraining agent on uniaxial tensile properties of PVA-ECC. In: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, p. 012029. https://doi.org/10.1088/1757-899X/409/1/012029

  20. Mendes JC, Moro TK, Figueiredo AS, Silva KD, Silva GC, Silva GJB, Peixoto RAF (2017) Constr Build Mater 145:648–661. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.024

    Article  CAS  Google Scholar 

  21. Chen B, Razaqpur AG (2022) Effect of air-entrainment and phase transition on chloride diffusion in partially frozen concrete. Cold Reg Sci Technol 196:103513. https://doi.org/10.1016/j.coldregions.2022.103513

    Article  Google Scholar 

  22. Eskandari H, Nic AM, Ghanei A (2016) Effect of Air Entraining admixture on corrosion of Reinforced concrete. Procedia Eng 150:2178–2184. https://doi.org/10.1016/j.proeng.2016.07.261

    Article  CAS  Google Scholar 

  23. Yang J, Wang P, Li H, Yang X (2016) Sulfate attack resistance of air-entrained silica fume concrete under dry-wet cycle condition. J Wuhan Univ Technol Sci Ed 31:857–864. https://doi.org/10.1007/s11595-016-1459-8

    Article  CAS  Google Scholar 

  24. Gong F, Takahashi Y, Segawa I, Maekawa K (2020) Mechanical properties of concrete with smeared cracking by alkali-silica reaction and freeze-thaw cycles. Cem Concr Compos 111:103623. https://doi.org/10.1016/j.cemconcomp.2020.103623

    Article  CAS  Google Scholar 

  25. Bury MA, Ong F, Attiogbe E, Nmai C, Smith J (2014) Microsphere-based admixture for durable concrete. Concr Int 36:59–63. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=51686759

    Google Scholar 

  26. Ramachandran VS (1996) Concrete admixtures handbook: properties, science, and technology, William Andrew, https://www.elsevier.com/books/concrete-admixtures-handbook/ramachandran/978-0-8155-1373-5 (accessed January 4, 2023)

  27. Attiogbe E, Damage (2021) Concr Int 43:27–33. https://www.proquest.com/trade-journals/new-way-deliver-protection-freezingand-thawing/docview/2476869338/se-2?accountid=13360

    Google Scholar 

  28. Ong FS, Attiogbe EK, Nmai CK, Smith JC (2015) Freezing-and-thawing behavior of cementitious systems with new polymeric microsphere-based admixture. ACI Mater J 112:735–743. https://doi.org/10.14359/51687977

    Article  Google Scholar 

  29. Ong FS, Nmai CK, Smith JC, Luciano J (2015) Microspheres-based admixture for free-thaw durability of concrete, in: SP-303 Thirteen. Int. Conf. Adv. Concr. Technol. Sustain. Issues, American Concrete Institute, pp. 255–267. https://doi.org/10.14359/51688138

  30. Ozyildirim C, Sprinkel MM (1982) Durability of concrete containing hollow plastic microspheres. ACI J Proc 79:307–312. https://doi.org/10.14359/10907

    Article  Google Scholar 

  31. Atienza J, Fox J, Lanning C (2016) Quantifying a particulate-based admixture in hardened concrete, in: Adv. Cem. Anal. Concr. Petrogr., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428 – 2959, pp. 161–171. https://doi.org/10.1520/STP161320180001

  32. He R, Lu NL (2024) Air void system and freezing-thawing resistance of concrete composite with the incorporation of thermo-expansive polymeric microspheres. Constr Build Mater 419:135535. https://doi.org/10.1016/j.conbuildmat.2024.135535

    Article  CAS  Google Scholar 

  33. Aglan H, Shebl S, Morsy M, Calhoun M, Harding H, Ahmad M (2009) Strength and toughness improvement of cement binders using expandable thermoplastic microspheres. Constr Build Mater 23:2856–2861. https://doi.org/10.1016/j.conbuildmat.2009.02.031

    Article  Google Scholar 

  34. Kim SR, Kwon WT, Kim BI, Kim Y, Ha SW (2010) Development of non explosive insulating and fire proof materials using porous Industrial byproducts. Mater Sci Forum 658:300–303. https://doi.org/10.4028/www.scientific.net/MSF.658.300

    Article  CAS  Google Scholar 

  35. Cuevas K, Chougan M, Martin F, Ghaffar SH, Stephan D, Sikora P (2021) 3D printable lightweight cementitious composites with incorporated waste glass aggregates and expanded microspheres – Rheological, thermal and mechanical properties. J Build Eng 44:102718. https://doi.org/10.1016/j.jobe.2021.102718

    Article  Google Scholar 

  36. Brooks AL, Zhou H, Hanna D (2018) Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Constr Build Mater 159:316–328. https://doi.org/10.1016/j.conbuildmat.2017.10.102

    Article  CAS  Google Scholar 

  37. ASTM C150 / C150M-20 (2020) Standard specification for Portland. ASTM International, West Conshohocken (https://www.astm.org)

    Google Scholar 

  38. He R, Ma H, Hafiz RB, Fu C, ** X, He J (2018) Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: experiment and theory. Mater Des 156:82–92. https://doi.org/10.1016/j.matdes.2018.06.045

    Article  CAS  Google Scholar 

  39. ASTM C403/C403M-16 (2017) Standard test method for time of setting of concrete mixtures by penetration resistance. ASTM International, West Conshohocken. www.astm.org

  40. ASTM C185-20 (2020) Standard Test Method for Air Content of Hydraulic Cement Mortar. ASTM International, West Conshohocken, PA. www.astm.org

  41. ASTM C1437-20, Standard test method for flow of hydraulic cement mortar:, ASTM International, West Conshohocken, PA (2020) www.astm.org

  42. ASTM C109 / C109M – 21 (2021) Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] cube specimens). ASTM International, West Conshohocken, PA. www.astm.org

  43. ASTM C307-18 (2018) Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, grouts, and monolithic surfacings. ASTM International, West Conshohocken, PA. www.astm.org

  44. ASTM C666 / C666M-15 (2015) Standard test method for resistance of concrete to Rapid freezing and thawing. ASTM International, West Conshohocken, PA. www.astm.org

  45. He R, Lu NL (2023) Unveiling the dielectric property change of concrete during hardening process by ground penetrating radar with the antenna frequency of 1.6 GHz and 2.6 GHz. Cem Concr Compos 144:105279. https://doi.org/10.1016/j.cemconcomp.2023.105279

    Article  CAS  Google Scholar 

  46. He R, Nantung T, Olek J, Lu N (2023) Field study of the dielectric constant of concrete: a parameter less sensitive to environmental variations than electrical resistivity. J Build Eng 74:106938. https://doi.org/10.1016/j.jobe.2023.106938

    Article  Google Scholar 

  47. Hu J, Ge Z, Wang K (2014) Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Constr Build Mater 50:657–663. https://doi.org/10.1016/J.CONBUILDMAT.2013.10.011

    Article  Google Scholar 

  48. Dai J, Wang Q, Lou X, Bao X, Zhang B, Wang J, Zhang X (2021) Solution calorimetry to assess effects of water-cement ratio and low temperature on hydration heat of cement. Constr Build Mater 269:121222. https://doi.org/10.1016/J.CONBUILDMAT.2020.121222

    Article  CAS  Google Scholar 

  49. Chia K-S, Zhang M-H (2007) Workability of air-entrained lightweight concrete from rheology perspective. Mag Concr Res 59:367–375. https://doi.org/10.1680/macr.2007.59.5.367

    Article  Google Scholar 

  50. Zuo S, Yuan Q, Huang T, Wang Z, Zhang K, Liu J (2023) Rheology and air entrainment of fresh Portland cement mortars in simulated low air pressure environments. Cem Concr Compos 135:104848. https://doi.org/10.1016/J.CEMCONCOMP.2022.104848

    Article  CAS  Google Scholar 

  51. Eugenin C, Navarrete I, Brevis W, Lopez M (2022) Air bubbles as an admixture for printable concrete: a review of the Rheological Effect of Entrained Air, 3D print. Addit Manuf 9:64–80. https://doi.org/10.1089/3dp.2020.0302

    Article  Google Scholar 

  52. Hamakareem MI (2017) Effect of air entrainment on compressive strength, density and ingredients of concrete, Int. J. Adv. Mech. Civ. Eng. 4 7–9. http://iraj.in (accessed January 4, 2023)

  53. Holan J, Novák J, Müller P, Štefan R (2020) Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures. Constr Build Mater 248:118662. https://doi.org/10.1016/j.conbuildmat.2020.118662

    Article  Google Scholar 

  54. Nowak-Michta A (2019) Impact analysis of air-entraining and superplasticizing admixtures on concrete compressive strength. Procedia Struct Integr 23:77–82. https://doi.org/10.1016/J.PROSTR.2020.01.066

    Article  Google Scholar 

  55. Özcan F, Emin M, Koç (2018) Influence of ground pumice on compressive strength and air content of both non-air and air entrained concrete in fresh and hardened state. Constr Build Mater 187:382–393. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.183

    Article  Google Scholar 

  56. ASTM C457 / C457M-16 (2016) Standard Test Method for Microscopical determination of parameters of the air-void system in hardened concrete. ASTM International, West Conshohocken, PA. www.astm.org

  57. Mayercsik NP, Vandamme M, Kurtis KE (2016) Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling. Cem Concr Res 88:43–59. https://doi.org/10.1016/J.CEMCONRES.2016.06.004

    Article  CAS  Google Scholar 

  58. Hasholt MT (2014) Air void structure and frost resistance: a challenge to Powers’ spacing factor. Mater Struct 47:911–923. https://doi.org/10.1617/s11527-013-0102-9

    Article  CAS  Google Scholar 

  59. ** S, Zhang J, Huang B (2013) Fractal analysis of effect of air void on freeze–thaw resistance of concrete. Constr Build Mater 47:126–130. https://doi.org/10.1016/J.CONBUILDMAT.2013.04.040

    Article  Google Scholar 

  60. Shon CS, Abdigaliyev A, Bagitova S, Chung CW, Kim D (2018) Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash. Cold Reg Sci Technol 155:127–136. https://doi.org/10.1016/J.COLDREGIONS.2018.08.003

    Article  Google Scholar 

  61. Litina C, Palmer D, Al-Tabbaa A, Hyeok Park D, Don Nguyen X, ** Jeon H, **ao S, **n Y, Li N, Kanellopoulos A, Giannaros P, Palmer D, Kerr A (2017) Polymeric microcapsules with switchable mechanical properties for self-healing concrete: synthesis, characterisation and proof of concept. Smart Mater Struct 26:045025. https://doi.org/10.1088/1361-665X/AA516C

    Article  Google Scholar 

  62. Al-Tabbaa A, Litina C, Giannaros P, Kanellopoulos A, Souza L (2019) First UK field application and performance of microcapsule-based self-healing concrete. Constr Build Mater 208:669–685. https://doi.org/10.1016/J.CONBUILDMAT.2019.02.178

    Article  Google Scholar 

  63. Chen Y, Al-Neshawy F, Punkki J (2021) Investigation on the effect of entrained air on pore structure in hardened concrete using MIP. Constr Build Mater 292:123441. https://doi.org/10.1016/J.CONBUILDMAT.2021.123441

    Article  Google Scholar 

  64. li Lan X, hui Zeng X, sheng Zhu H, cheng Long G, **e Y (2022) Experimental investigation on fractal characteristics of pores in air-entrained concrete at low atmospheric pressure. Cem Concr Compos 130:104509. https://doi.org/10.1016/J.CEMCONCOMP.2022.104509

    Article  CAS  Google Scholar 

  65. Ma H (2014) Mercury intrusion porosimetry in concrete technology: Tips in measurement, pore structure parameter acquisition and application. J Porous Mater 21:207–215. https://doi.org/10.1007/s10934-013-9765-4

    Article  CAS  Google Scholar 

  66. Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based material. Cem Concr Res 30:1517–1525. https://doi.org/10.1016/S0008-8846(00)00370-7

    Article  CAS  Google Scholar 

  67. Li X, Kang Y, Haghighi M (2018) Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP). Measurement 116:122–128. https://doi.org/10.1016/J.MEASUREMENT.2017.10.059

    Article  Google Scholar 

  68. Diamond S, Leeman ME (1994) Pore size distributions in hardened cement paste by SEM image analysis, MRS Proc. 370 217. https://doi.org/10.1557/PROC-370-217

  69. Wang M, Pande GN, Kong LW, Feng YT (2017) Comparison of pore-size distribution of Soils obtained by different methods. Int J Geomech 17:06016012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000696

    Article  Google Scholar 

  70. He R, Ye H, Ma H, Fu C, ** X, Li Z (2019) Correlating the Chloride Diffusion Coefficient and Pore structure of cement-based materials using modified Noncontact Electrical Resistivity Measurement. J Mater Civ Eng 31:04019006. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E5 Inc. for providing the Expancel polymeric microspheres.

Funding

The authors declare that no funding was used in this study.

Author information

Authors and Affiliations

Authors

Contributions

R.H.: investigation, formal analysis, writing—original draft. N.L.: supervision, writing—editing.

Corresponding author

Correspondence to Na Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Lu, N. Hydration, fresh, mechanical, and freeze-thaw properties of cement mortar incorporated with polymeric microspheres. Adv Compos Hybrid Mater 7, 92 (2024). https://doi.org/10.1007/s42114-024-00899-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00899-2

Keywords

Navigation