Log in

Defect passivation in perovskite films by p-methoxy phenylacetonitrile for improved device efficiency and stability

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The certification efficiency of halide perovskite solar cell is as high as 25.7%, which is one of the most efficient solar cells at present. However, the defects in the halide perovskite including grain boundary, interface defects, and ionic defects often act as nonradiative composite sites, which lead to rapid degradation of halide perovskite films, deteriorate the performance of perovskite devices, and lead to instability. In this work, a suitable multifunctional molecule additive p-methoxy phenylacetonitrile (pMP) is selected to improve the film and device stability. Specifically, pMP delays the crystallization rate of halide perovskite and promotes the formation of high-quality large grain halide perovskite films, and C≡N in pMP forms a coordination bond with Pb2+ and passivates the uncoordinated Pb2+ defects. Moreover, the π bonds increase electron transport. In addition, the methoxy group in pMP forms an effective barrier on halide perovskite to enhance its water stability. With the influence of the comprehensive effect of these factors of pMP, the PSC with pMP additive achieved the highest efficiency of 21.26% and significantly improved the stability of moisture resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in the supporting information.

References

  1. Hou CX, Yang WY, Kimura H, **e XB, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu BB, Sridhar D, Algadi H, Guo ZH, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide Author links open overlay panel. J Mater Sci Technol 142:185–195

    Article  CAS  Google Scholar 

  2. Mu Q, Liu R, Kimura H et al (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6:23

    Article  CAS  Google Scholar 

  3. Ma Y, Hou C, Kimura H et al (2023) Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater 6:59

    Article  Google Scholar 

  4. Zhang Y, Liu L, Zhao L et al (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater 5:2601–2610

    Article  CAS  Google Scholar 

  5. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  6. Jeong J, Kim M, Seo J, Lu HZ, Ahlawat P, Mishra A, Yang YG, Hope MA, Eickemeyer FT, Kim M, Yoon YJ, Choi IW, Darwich BP, Choi SJ, Jo Y, Lee JH, Walker B, Zakeeruddin SM, Emsley L, Rothlisberger U, Hagfeldt A, Kim DS, Grätzel M, Kim JY (2021) Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 59:2381

    Google Scholar 

  7. Zhang P, Chen Y, Wu S, Li X, Liu M, Li S (2022) Enhancing the performance of n-i-p perovskite solar cells by introducing hydroxyethylpiperazine ethane sulfonic acid for interfacial adjustment. Nanoscale 14:35–41

    Article  CAS  Google Scholar 

  8. Chen Y, Wu S, Li X, Liu M, Chen Z, Zhang P, Li S (2022) Efficient and stable low-cost perovskite solar cells enabled by using surface passivated carbon as the counter electrode. J Mater Chem C 10:1270–1275

    Article  CAS  Google Scholar 

  9. Xu Z, Zhou X, Li X, Zhang P (2022) Polymer-regulated SnO2 composites electron transport layer for high-efficiency n–i–p perovskite solar cells. Solar RRL 6:2200092

    Article  CAS  Google Scholar 

  10. **ao K, Lin Y-H, Zhang M, Oliver RD, Wang X, Liu Z, Luo X, Li J, Lai D, Luo H (2022) Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376:762–767

    Article  CAS  Google Scholar 

  11. Zhu T, Gong H, Song Qi, Dong Yi, You F, Li D, He Z, Liang C (2022) Multifunctional organic additive for improving the open-circuit voltage of perovskite solar cells. Solar RRL 6:2200296

    Article  CAS  Google Scholar 

  12. Xu Z, Ng CH, Zhou X, Li X, Zhang P, Teo SH (2022) Polymer-complexed SnO2 electron transport layer for high-efficiency n-i-p perovskite solar cells. Nanoscale 14:12090–12098

    Article  CAS  Google Scholar 

  13. Wang J, Zhang J, Zhou Y, Liu H, Xue Q, Li X, Chueh C-C, Yip H-L, Zhu Z, Jen AKY (2020) Nat Commun 11:177

    Article  CAS  Google Scholar 

  14. Jiang L-L, Wang Z-K, Li M, Zhang C-C, Ye Q-Q, Hu K-H, Lu D-Z, Fang P-F, Liao L-S (2018) Adv Funct Mater 28:1705875

    Article  Google Scholar 

  15. Li X, Wu S, Chen Y, Tang J, Liu M, Chen Z, Zhang P, Li S (2022) Grain boundary defect controlling of perovskite via N-hydroxysuccinimide-post-treatment process in efficient and dtable n-i-p perovskite solar cells. Solar RRL 6:2200502

    Article  CAS  Google Scholar 

  16. Yang Z, Dou JJ, Kou S, Dang JL, Ji YQ, Yang GJ, Wu WQ, Kuang DB, Wang MQ (2020) Adv Funct Mater 30:1910710

    Article  CAS  Google Scholar 

  17. Li X, Zhang P, Li S et al (2023) Mixed perovskites (2D/3D)-based solar cells: a review on crystallization and surface modification for enhanced efficiency and stability. Adv Compos Hybrid Mater 6:111

    Article  CAS  Google Scholar 

  18. Li YM, Wu HX, Qi WJ, Zhou X, Li JL, Cheng J, Zhao Y, Li YL, Zhang XD (2020) Nano Energy 77

    Article  CAS  Google Scholar 

  19. Tianhao Wu, Li X, Qi Y, Zhang Y, Han L (2021) Defect passivation for perovskite solar cells: from molecule design to device performance. Chemsuschem 14:4354–4443

    Article  Google Scholar 

  20. Collavini S, Cabrera-Espinoza A, Delgado JL (2021) Organic polymers as additives in perovskite solar cells. Macromolecules 54(12):5451–5463

    Article  CAS  Google Scholar 

  21. Roy S, Datta S (2020) Applications of polymers in perovskite solar cells: a review. Ann Chem Sci Res 2:1–4

    Article  Google Scholar 

  22. Duan X, Li X, Tan L, Huang Z, Yang J, Liu G, Lin Z, Chen Y (2020) Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv Mater 32:2000617

    Article  CAS  Google Scholar 

  23. Wang D, Zhang L, Deng K, Zhang W, Song J, Wu J, Lan Z (2018) Influence of polymer additives on the efficiency and stability of ambient-air solution-processed planar perovskite solar cells. Energy Technol 6:2380–2386

    Article  CAS  Google Scholar 

  24. Kim DH, Muzzillo CP, Tong J, Palmstrom AF, Larson BW, Choi C, Harvey SP, Glynn S, Whitaker JB, Zhang F, Li Z, Lu H, van Hest MFAM, Berry JJ, Mansfield LM, Huang Y, Yan Y, Zhu K (2019) Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3:1734

  25. Tong J, Song Z, Kim DH, Chen X, Chen C, Palmstrom AF, Ndione PF, Reese MO, Dunfield SP, Reid OG, Liu J, Zhang F, Harvey SP, Li Z, Christensen ST, Teeter G, Zhao D, Al-Jassim MM, van Hest MFAM, Beard MC, Shaheen SE, Berry JJ, Yan Y, Zhu K (2019) Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solarcells. Science 364:475–479. https://doi.org/10.1126/science.aav7911

  26. Zhang Y, Grancini G, Fei Z, Shirzadi E, Liu X, Oveisi E, Tirani FF, Scopelliti R, Feng Y, Nazeeruddin MK, Dyson PJ (2019) Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells. Nano Energy 58:105

  27. Mai C, Zhou Q, **ong Q, Chen C, Xu J, Zhang Z, Lee HW, Yeh CY, Gao P (2021) Donor–π–acceptor type porphyrin derivatives assisted defect passivation for efficient hybrid perovskite solar cells. Adv Funct Mater 31:2007762

  28. Xu Z, Zhou X, Li X et al (2023) Buried-in interface with two-terminal functional groups for perovskite-based photovoltaic solar cells. Adv Compos Hybrid Mater 6:66

    Article  CAS  Google Scholar 

  29. Hong S, Lee SungHun, Lee HyunHwi, Jeon T-Y, Kim HyoJung (2021) Efficient application of intermediate phase for highly-oriented MAPbI3 perovskite solar cells in ambient air. Sol Energy 228:200–205

    Article  CAS  Google Scholar 

  30. Cao XB, Li CL, Zhi LL, Li YH, Cui X, Yao YW, Ci LJ, Wei JQ (2017) Fabrication of high quality perovskite films by modulating the Pb–O bonds in Lewis acid–base adducts. J Mater Chem A 5:8416–8422

    Article  CAS  Google Scholar 

  31. Zhifang Wu, Raga SR, Juarez-Perez EJ, Yao X, Jiang Y, Ono LK, Ning Z, Tian He, Qi Y (2018) Improved efficiency and stability of perovskite solar cells induced by C=O functionalized hydrophobic ammonium-based additives. Adv Mater 30:1703670

    Article  Google Scholar 

  32. Gao W-J, Hui-Juan Yu, Chen J, **ao J, Fang J-K, Jia X-R, Peng C-F, Shao G, Kuang D-B (2021) Simple hole-transporting materials containing twin-carbazole moiety and unconjugated flexible linker for efficient and stable perovskite solar cells. Chem Engin J 405

    Article  CAS  Google Scholar 

  33. **ong Z, Chen X, Zhang B (2022) Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv Mater 34:2106118

    Article  CAS  Google Scholar 

  34. Chen J, Zhao X, Kim S, Park N (2019) Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv Mater 31:1902902

  35. Bi H, **ao Z, Zuo X, Liu B, He D, Bai L, Wang W, Li X, Song Q, Sun K, Chen J (2021) Multifunctional organic ammonium salt modified SnO2 nanoparticles toward efficient and stable planar perovskite solarcells. J Mater Chem A 9:3940

  36. **ong S, Hou Z, Zou S, Lu X, Yang J, Hao T, Zhou Z, Xu J, Zeng Y, **ao W, Dong W, Li D, Wang X, Hu Z, Sun L, Wu Y, Liu X, Ding L, Sun Z, Fahlman M, Bao Q (2021) Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5:467–480

    Article  CAS  Google Scholar 

  37. Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J (2021) Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy 89

    Article  CAS  Google Scholar 

  38. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J (2019) Surface passivation of perovskite film for efficient solar cells. Nat Photonics 13:460–466

  39. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J (2016) Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC (NH2) 2PbI3-based perovskite solar cells Nat Energy 2:1–7

Download references

Acknowledgements

The authors thank Research Center of Analysis and Test, Henan University, for measurements.

Funding

This work was supported by Princess Nourah bint Abdularahman University Researchers Supporting Project (No. PNURSP2023R18), Princess Nourah bint Abdularahman University, Riyadh, Saudi Arabia. Science and technology breakthrough plan project of Henan province (No. 232102241013), China.

Author information

Authors and Affiliations

Authors

Contributions

Jianyao Tang performed the research and wrote the paper. Shenghan Wu analyzed the data. Putao Zhang and Shengjun Li conceived the idea of the study. **aohui Li interpreted the results. Qinglong Jiang, Najla AlMasoud, Taghrid S. Alomar, and Zeinhom M. El-Bahy revised the manuscript.

Corresponding authors

Correspondence to Putao Zhang, Shengjun Li or Qinglong Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1825 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Wu, S., AlMasoud, N. et al. Defect passivation in perovskite films by p-methoxy phenylacetonitrile for improved device efficiency and stability. Adv Compos Hybrid Mater 6, 155 (2023). https://doi.org/10.1007/s42114-023-00732-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00732-2

Keywords

Navigation