Log in

Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Herein, a novel three-dimensional nanocomposite aerogel (rGO/Fe3O4/PANI NAs) with outstanding magnetoresistance and piezoresistance was manufactured by the in-situ polymerized polyaniline nanoarrays (PANI NAs) surrounding magnetic reduced graphene oxide (rGO/Fe3O4) aerogel that was prepared through the combination of hydrothermal method and lyophilization method. This rGO/Fe3O4/PANI NAs nanocomposite aerogel with 60 wt.% loading of PANI NAs well preserved the porous structure and gained a superior mechanical strength (121.04 kPa) compared with that of rGO aerogel, rGO/Fe3O4 aerogel, and rGO/PANI NAs aerogel (43.54, 58.12, and 116.98 kPa, respectively). The rGO/Fe3O4/PANI NAs nanocomposite aerogel could hold its original state with almost 100% recovery ratio after cycling compression tests under 80% of deformation strain at a suitable compression rate of 5 mm min−1. The introduction of PANI NAs into the rGO/Fe3O4 aerogel also brought a satisfactory piezoresistive performance with a large gauge factor up to 2.83 and a superb stability for the electrical signal output (which was decreased only 5.80% after 500 compression cycles) to the rGO/Fe3O4/PANI NAs nanocomposite aerogel. The loading of Fe3O4 and PANI NAs also provided rGO/Fe3O4/PANI NAs nanocomposite aerogel with a negative magnetoresistance value up to − 4.37%. The magnetoresistance was explained via the amelioration of spin transport in the material. The unique negative magnetoresistance and excellent piezoresistance make rGO/Fe3O4/PANI NAs nanocomposite aerogel a promising candidate for the development of advanced electronic devices.

Graphical abstract

A novel three-dimensional nanocomposite aerogel (rGO/Fe3O4/PANI NAs) exhibits amazing negative magnetoresistance and outstanding piezoresistive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gu H, Zhang X, Wei H, Huang Y, Wei S, Guo Z (2013) An overview of the magnetoresistance phenomenon in molecular systems. Chem Soc Rev 42:5907–5943

    Article  CAS  Google Scholar 

  2. Jiang Y, de Jong EJ, van de Sande V, Gazibegovic S, Badawy G, Bakkers E, Frolov SM (2021) Hysteretic magnetoresistance in nanowire devices due to stray fields induced by micromagnets. Nanotechnology 32: 095001

  3. Choi J, Gani AW, Bechstein DJB, Lee J-R, Utz PJ, Wang SX (2016) Portable, one-step, and rapid GMR biosensor platform with smartphone interface. Biosens Bioelectron 85:1–7

    Article  CAS  Google Scholar 

  4. Qin P, Feng Z, Zhou X, Guo H, Wang J, Yan H, Wang X, Chen H, Zhang X, Wu H, Zhu Z, Liu Z (2020) Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano 14:6242–6248

    Article  CAS  Google Scholar 

  5. Ionete EI, Niculescu AE, Spiridon SI, Monea BF (2021) Magnetoresistance behavior of cryogenic temperature sensors based on single-walled carbon nanotubes. IEEE Sens J 21:2767–2774

    Article  CAS  Google Scholar 

  6. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51–64

    Article  CAS  Google Scholar 

  7. Zhang X, Tong J, Zhu H, Wang Z, Zhou L, Wang S, Miyashita T, Mitsuishi M, Qin G (2017) Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. J Mater Chem C 5:5055–5062

    Article  CAS  Google Scholar 

  8. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:534–542

    Article  CAS  Google Scholar 

  9. Cai J, Wang W, Pan D, Young DP, Gu H, Guo Z (2020) Electrical transport in polyaniline-barium ferrite nanocomposites with negative giant magnetoresistance. J Phys Chem C 124:22646–22655

    Article  CAS  Google Scholar 

  10. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  11. Gu H, Zhang H, Lin J, Shao Q, Young DP, Sun L, Shen TD, Guo Z (2018) Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer 143:324–330

    Article  CAS  Google Scholar 

  12. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, **e P, Pan D, Liu C, Guo Z (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater: https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  13. Gu H, Xu X, Cai J, Wei S, Wei H, Liu H, Young DP, Shao Q, Wu S, Ding T, Guo Z (2019) Controllable organic magnetoresistance in polyaniline coated poly(p-phenylene-2,6-benzobisoxazole) short fibers. Chem Commun 55:10068–10071

    Article  CAS  Google Scholar 

  14. Jeon J, Lee DH, Kim YS, Chung HJ, Jhang SH, Kwon Y, Lee S, Park BH (2020) Large temperature-independent magnetoresistance without gating operation in monolayer graphene. ACS Appl Mater Interfaces 12:53134–53140

    Article  CAS  Google Scholar 

  15. Li X, Sagar RUR, Zhong L, Liu Y, Hui D, Zhang M (2019) Nonsaturating negative magnetoresistance in laser-induced graphene. Mater Lett 248:43–47

    Article  CAS  Google Scholar 

  16. Shi W, Han G, Chang Y, Song H, Hou W, Chen Q (2020) Using stretchable PPy@PVA composites as a high-sensitivity strain sensor to monitor minute motion. ACS Appl Mater Interfaces 12:45373–45382

    Article  CAS  Google Scholar 

  17. Kim H-J, Thukral A, Yu C (2018) Highly sensitive and very stretchable strain sensor based on a rubbery semiconductor. ACS Appl Mater Interfaces 10:5000–5006

    Article  CAS  Google Scholar 

  18. Chao M, Wang Y, Ma D, Wu X, Zhang W, Zhang L, Wan P (2020) Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy 78: 105187

  19. Gu H, Zhang H, Ma C, Sun H, Liu C, Dai K, Zhang J, Wei R, Ding T, Guo Z (2019) Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. J Mater Chem C 7:2353–2360

    Article  CAS  Google Scholar 

  20. Cao M, Su J, Fan S, Qiu H, Su D, Li L (2021) Wearable piezoresistive pressure sensors based on 3D graphene. Chem Eng J 406: 126777

  21. Zhong Y, Tan X, Shi T, Huang Y, Cheng S, Chen C, Liao G, Tang Z (2018) Tunable wrinkled graphene foams for highly reliable piezoresistive sensor. Sens Actuators A: Phys 281:141–149

    Article  CAS  Google Scholar 

  22. Wei H, Li A, Kong D, Li Z, Cui D, Li T, Dong B, Guo Z (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4:86–95

    Article  CAS  Google Scholar 

  23. Gao F, Gu HB, Wang HW, Wang XF, **ang B, Guo ZH (2015) Magnetic amine-functionalized polyacrylic acid-nanomagnetite for hexavalent chromium removal from polluted water. RSC Adv 5:60208–60219

    Article  CAS  Google Scholar 

  24. Wang YQ, **e WH, Liu H, Gu HB (2020) Hyperelastic magnetic reduced graphene oxide three-dimensional framework with superb oil and organic solvent adsorption capability. Adv Compos Hybrid Mater 3:473–484

    Article  CAS  Google Scholar 

  25. Guo J, Bao H, Zhang Y, Shen X, Kim J-K, Ma J, Shao L (2021) Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Memb Sci 619: 118791

  26. Chen Y, Wang Y, Su T, Chen J, Zhang C, Lai X, Jiang D, Wu Z, Sun C, Li B, Guo Z (2019) Self-healing polymer composites based on hydrogen bond reinforced with graphene oxide. ES Mater Manuf 4:31–37

    CAS  Google Scholar 

  27. Li R, Yang Y, Wu D, Li K, Qin Y, Tao Y, Kong Y (2019) Covalent functionalization of reduced graphene oxide aerogels with polyaniline for high performance supercapacitors. Chem Commun 55:1738–1741

    Article  CAS  Google Scholar 

  28. Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121:7573–7583

    Article  CAS  Google Scholar 

  29. Li S, Yang C, Sarwar S, Nautiyal A, Zhang P, Du H, Liu N, Yin J, Deng K, Zhang X (2019) Facile synthesis of nanostructured polyaniline in ionic liquids for high solubility and enhanced electrochemical properties. Adv Compos Hybrid Mater 2:279–288

    Article  CAS  Google Scholar 

  30. Gu H, Gao C, Zhou X, Du A, Naik N, Guo Z (2021) Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater 4:459–468

    Article  CAS  Google Scholar 

  31. Qi G, Liu Y, Chen L, **e P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    Article  CAS  Google Scholar 

  32. Wu X, Tang L, Zheng S, Huang Y, Yang J, Liu Z, Yang W, Yang M (2018) Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J Power Sources 397:189–195

    Article  CAS  Google Scholar 

  33. Gu H, Lou H, Tian J, Liu S, Tang Y (2016) Reproducible magnetic carbon nanocomposites derived from polystyrene with superior tetrabromobisphenol A adsorption performance. J Mater Chem A 4:10174–10185

    Article  CAS  Google Scholar 

  34. Kakade PM, Kachere AR, Mandlik NT, Rondiya SR, Jadkar SR, Bhosale SV (2021) Graphene oxide assisted synthesis of magnesium oxide nanorods. ES Mater Manuf 12:63–71

    CAS  Google Scholar 

  35. Mezgebe MM, Yan Z, Wei G, Gong S, Zhang F, Guang S, Xu H (2017) 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor electrodes with improved electrochemical properties. Mater Today Energy 5:164–172

    Article  Google Scholar 

  36. Wang H, Shi P, Rui M, Zhu A, Liu R, Zhang C (2020) The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption. Prog Org Coat 139: 105476

  37. Yao F, **e W, Yang M, Zhang H, Gu H, Du A, Naik N, Young DP, Lin J, Guo Z (2021) Interfacial polymerized copolymers of aniline and phenylenediamine with tunable magnetoresistance and negative permittivity. Mater Today Phys 21: 100502

  38. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Mater 4:265–273

    Article  CAS  Google Scholar 

  39. Ingle RV, Shaikh SF, Pankaj KÂ, Bhujbal Pankaj KÂ, Pathan HM, Tabhane VA (2020) Polyaniline doped with protonic acids: optical and morphological studies. ES Mater Manuf 8:54–59

    CAS  Google Scholar 

  40. Wang Y, Gao X, Fu Y, Wu X, Wang Q, Zhang W, Luo C (2019) Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos B: Eng 169:221–228

    Article  CAS  Google Scholar 

  41. He S, Jiang X, Li S, Ran F, Long J, Shao L (2020) Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE J 66: e16543

  42. Luo J, Zhong W, Zou Y, **ong C, Yang W (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81

    Article  CAS  Google Scholar 

  43. Wang X, Zeng X, Cao D (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63

    Google Scholar 

  44. Xu X, Fu Q, Gu H, Guo Y, Zhou H, Zhang J, Pan D, Wu S, Dong M, Guo Z (2020) Polyaniline crystalline nanostructures dependent negative permittivity metamaterials. Polymer 188: 122129

  45. Huang J, Liu X, Yang Z, Wu X, Wang J, Yang S (2019) Extremely elastic and conductive N-doped graphene sponge for monitoring human motions. Nanoscale 11:1159–1168

    Article  CAS  Google Scholar 

  46. Mi H-Y, **g X, Politowicz AL, Chen E, Huang H-X, Turng L-S (2018) Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132:199–209

    Article  CAS  Google Scholar 

  47. Li C, Ding M, Zhang B, Qiao X, Liu C-Y (2018) Graphene aerogels that withstand extreme compressive stress and strain. Nanoscale 10:18291–18299

    Article  CAS  Google Scholar 

  48. Zhang H, Liu N, Shi Y, Liu W, Yue Y, Wang S, Ma Y, Wen L, Li L, Long F, Zou Z, Gao Y (2016) Piezoresistive sensor with high elasticity based on 3d hybrid network of sponge@CNTs@Ag NPs. ACS Appl Mater Interfaces 8:22374–22381

    Article  CAS  Google Scholar 

  49. Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    Article  CAS  Google Scholar 

  50. Wu X, Han Y, Zhang X, Zhou Z, Lu C (2016) Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human–machine interfacing. Adv Funct Mater 26:6246–6256

    Article  CAS  Google Scholar 

  51. Zhao S, Gao Y, Zhang G, Deng L, Li J, Sun R, Wong C-P (2015) Covalently bonded nitrogen-doped carbon-nanotube-supported Ag hybrid sponges: synthesis, structure manipulation, and its application for flexible conductors and strain-gauge sensors. Carbon 86:225–234

    Article  CAS  Google Scholar 

  52. Zhai Y, Yu Y, Zhou K, Yun Z, Huang W, Liu H, **a Q, Dai K, Zheng G, Liu C, Shen C (2020) Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem Eng J 382: 122985

  53. Bae GY, Pak SW, Kim D, Lee G, Kim DH, Chung Y, Cho K (2016) Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28:5300–5306

    Article  CAS  Google Scholar 

  54. Sutar RA, Kumari L, Murugendrappa MV (2020) Three-dimensional variable range hop** and thermally activated conduction mechanism of polypyrrole/zinc cobalt oxide nanocomposites. J Phys Chem C 124:21772–21781

    Article  CAS  Google Scholar 

  55. Rai RC, Hinz J, McKenna D, Pawlak J, DeMarco M (2019) Magnetic and electrical transport properties of YbFe2O4. Phys Rev B 100:7

    Google Scholar 

  56. Gu H, Guo J, Wei H, Guo S, Liu J, Huang Y, Khan MA, Wang X, Young DP, Wei S, Guo Z (2015) Strengthened magnetoresistive epoxy nanocomposite papers derived from synergistic nanomagnetite-carbon nanofiber nanohybrids. Adv Mater 27:6277–6282

    Article  CAS  Google Scholar 

  57. Kim W, Kawaguchi K, Koshizaki N, Sohma M, Matsumoto T (2003) Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4. J Appl Phys 93:8032–8034

    Article  CAS  Google Scholar 

  58. Gupta S, Narayan J (2019) Non-equilibrium processing of ferromagnetic heavily reduced graphene oxide. Carbon 153:663–673

    Article  CAS  Google Scholar 

  59. Qiu B, Guo J, Wang Y, Wei X, Wang Q, Sun D, Khan MA, Young DP, O’Connor R, Huang X, Zhang X, Weeks BL, Wei S, Guo Z (2015) Dielectric properties and magnetoresistance behavior of polyaniline coated carbon fabrics. J Mater Chem C 3:3989–3998

    Article  CAS  Google Scholar 

  60. Banerjee D, Kar AK (2018) Influence of polaron do** and concentration dependent FRET on luminescence of PAni–PMMA blends for application in PLEDs. Phys Chem Chem Phys 20:23055–23071

    Article  CAS  Google Scholar 

  61. Weng Z, Gillin WP, Kreouzis T (2020) Fitting the magnetoresponses of the OLED using polaron pair model to obtain spin-pair dynamics and local hyperfine fields. Sci Rep 10:16806

    Article  CAS  Google Scholar 

  62. Yuan P, Qiao X, Yan D, Ma D (2018) Magnetic field effects on the quenching of triplet excitons in exciplex-based organic light emitting diodes. J Mater Chem C 6:5721–5726

    Article  CAS  Google Scholar 

  63. Gu H, Guo J, He Q, Jiang Y, Huang Y, Haldolaarachige N, Luo Z, Young DP, Wei S, Guo Z (2014) Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6:181–189

    Article  CAS  Google Scholar 

  64. Li T, Xu Y, Zhang Z, Liang Z, Odunmbaku O, Huang X, Boi FS, Zhang S, Liu Y, Wen J, Yu T (2020) Self-assembly prepared millimeter length ferromagnetic carbon nanotubes with spin nontrivial electronic transport properties. ACS Appl Electron Mater 2:491–498

    Article  CAS  Google Scholar 

  65. Chen W, Lu H-Z, Zilberberg O (2019) Weak localization and antilocalization in nodal-line semimetals: dimensionality and topological effects. Phys Rev Lett 122: 196603

  66. Bhaumik M, Mahule TS, Srinivasu VV, Maity A (2019) Investigation of the electrical charge transport mechanism and magnetoresistance response in chloride-doped polyaniline-Fe composite nanofibers. J Phys D: Appl Phys 52: 345304

  67. Jiang Y, Liu M, Yan X, Ono T, Feng L, Cai J, Zhang D (2018) Electrical breakdown-induced tunable piezoresistivity in graphene/polyimide nanocomposites for flexible force sensor applications. Adv Mater Technol 3:1800113

    Article  CAS  Google Scholar 

  68. Wu C, Huang X, Wu X, Qian R, Jiang P (2013) Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv Mater 25:5658–5662

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the support and funding from the Foundation of the National Key Research and Development Program of China (2017YFA0204600), Shanghai Rising-Star Program (No. 19QA1409400), and Fundamental Research Funds for the Central Universities. This work is supported by Shanghai Science and Technology Commission (19DZ2271500). The authors also thank Bei**g Zhongkebaice Technology Service Co., Ltd for the HRTEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Gu or Qin Lei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 16430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, W., Yao, F., Gu, H. et al. Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Mater 5, 1003–1016 (2022). https://doi.org/10.1007/s42114-021-00413-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00413-y

Keywords

Navigation