Log in

Computational fluid dynamics based hemodynamics in the management of intracranial aneurysms: state-of-the-art

  • Review
  • Published:
Chinese Journal of Academic Radiology Aims and scope Submit manuscript

Abstract

Intracranial aneurysms (IAs) are increasingly found in clinical practice due to widely used advanced imaging examinations. However, the mechanism of development, growth, rupture, and recurrence of IAs remains unknown. Rupture of IAs results in subarachnoid hemorrhage, which is associated with high morbidity and mortality. Assessment of intra-aneurysmal hemodynamics using computational fluid dynamics (CFD) holds great promise in the management of IAs. Hemodynamic factors have a critical role in the formation, progression, and recurrence of aneurysms, thus having great potential to guide the decision-making in clinical practice. This review describes current evidence of CFD-based hemodynamics in assessing the formation, growth, rupture, and recurrence of aneurysms. The challenges and future directions of the clinical implementations of CFD are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

GON:

Gradient oscillatory number

IAs:

Intracranial aneurysms

LSA:

Low WSS area

MMPs:

Matrix metalloproteinases

OSI:

Oscillatory shear index

PLc:

Pressure loss coefficient

SAH:

Subarachnoid hemorrhages

WSS:

Wall shear stress

WSSG:

WSS gradient

References

  1. Brown RD Jr, Broderick JP. Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol. 2014;13:393–404.

    Article  PubMed  Google Scholar 

  2. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10:626–36.

    Article  PubMed  Google Scholar 

  3. Investigators UJ, Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366:2474–82.

    Article  Google Scholar 

  4. Lawton MT, Vates GE. Subarachnoid hemorrhage. N Engl J Med. 2017;377:257–66.

    Article  PubMed  Google Scholar 

  5. Naggara ON, Lecler A, Oppenheim C, Meder JF, Raymond J. Endovascular treatment of intracranial unruptured aneurysms: a systematic review of the literature on safety with emphasis on subgroup analyses. Radiology. 2012;263:828–35.

    Article  PubMed  Google Scholar 

  6. Joo SW, Lee SI, Noh SJ, Jeong YG, Kim MS, Jeong YT. What is the significance of a large number of ruptured aneurysms smaller than 7 mm in diameter? J Korean Neurosurg Soc. 2009;45:85–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Korja M, Kivisaari R, Rezai Jahromi B, Lehto H. Size and location of ruptured intracranial aneurysms: consecutive series of 1993 hospital-admitted patients. J Neurosurg. 2017;127:748–53.

    Article  PubMed  Google Scholar 

  8. Etminan N, Rinkel GJ. Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol. 2016;12:699–713.

    Article  PubMed  Google Scholar 

  9. Turjman AS, Turjman F, Edelman ER. Role of fluid dynamics and inflammation in intracranial aneurysm formation. Circulation. 2014;129:373–82.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cebral JR, Detmer F, Chung BJ, Choque-Velasquez J, Rezai B, Lehto H, et al. Local hemodynamic conditions associated with focal changes in the intracranial aneurysm wall. AJNR Am J Neuroradiol. 2019;40:510–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol. 2017;38:119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koseki H, Miyata H, Shimo S, Ohno N, Mifune K, Shimano K, et al. Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl Stroke Res. 2020;11:80–92.

    Article  PubMed  Google Scholar 

  13. Cebral JR, Mut F, Weir J, Putman CM. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol. 2011;32:264–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lang S, Hoelter P, Birkhold AI, Schmidt M, Endres J, Strother C, et al. Quantitative and qualitative comparison of 4d-dsa with 3d-dsa using computational fluid dynamics simulations in cerebral aneurysms. AJNR Am J Neuroradiol. 2019;40:1505–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jou LD, Lee DH, Morsi H, Mawad ME. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol. 2008;29:1761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. **ang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. 2011;42:144–52.

    Article  PubMed  Google Scholar 

  17. Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 2007;38:1924–31.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shimogonya Y, Ishikawa T, Imai Y, Matsuki N, Yamaguchi T. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J Biomech. 2009;42:550–4.

    Article  PubMed  Google Scholar 

  19. Takao H, Murayama Y, Otsuka S, Qian Y, Mohamed A, Masuda S, et al. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke. 2012;43:1436–9.

    Article  PubMed  Google Scholar 

  20. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012;32:1659–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, et al. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke. 2008;39:3172–8.

    Article  PubMed  Google Scholar 

  22. Chalouhi N, Hoh BL, Hasan D. Review of cerebral aneurysm formation, growth, and rupture. Stroke. 2013;44:3613–22.

    Article  PubMed  Google Scholar 

  23. Jayaraman T, Berenstein V, Li X, Mayer J, Silane M, Shin YS, et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery. 2005;57:558–64 (discussion 558–564).

    Article  PubMed  Google Scholar 

  24. Hasan D, Hashimoto T, Kung D, Macdonald RL, Winn HR, Heistad D. Upregulation of cyclooxygenase-2 (cox-2) and microsomal prostaglandin e2 synthase-1 (mpges-1) in wall of ruptured human cerebral aneurysms: preliminary results. Stroke. 2012;43:1964–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang X, Ares WJ, Taussky P, Ducruet AF, Grandhi R. Role of matrix metalloproteinases in the pathogenesis of intracranial aneurysms. Neurosurg Focus. 2019;47:E4.

    Article  PubMed  Google Scholar 

  26. Alfano JM, Kolega J, Natarajan SK, **ang J, Paluch RA, Levy EI, et al. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses. Neurosurgery. 2013;73:497–505.

    Article  PubMed  Google Scholar 

  27. Metaxa E, Tremmel M, Natarajan SK, **ang J, Paluch RA, Mandelbaum M, et al. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke. 2010;41:1774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kulcsar Z, Ugron A, Marosfoi M, Berentei Z, Paal G, Szikora I. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. AJNR Am J Neuroradiol. 2011;32:587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun L, Wang J, Li M, Li M, Zhu Y. The contribution of wall shear stress insult to the growth of small unruptured cerebral aneurysms in longitudinal 3D-TOF-MRA. J Neurol Sci. 2020;413: 116798.

    Article  PubMed  Google Scholar 

  30. Zhou G, Wang J, Liu W, Gu W, Su M, Feng Y, et al. An assessment of how the anterior cerebral artery anatomy impacts ACoA aneurysm formation based on CFD analysis. Br J Neurosurg. 2020;29:1–5.

    Article  Google Scholar 

  31. Chen H, Selimovic A, Thompson H, Chiarini A, Penrose J, Ventikos Y, et al. Investigating the influence of haemodynamic stimuli on intracranial aneurysm inception. Ann Biomed Eng. 2013;41:1492–504.

    Article  PubMed  Google Scholar 

  32. Mantha A, Karmonik C, Benndorf G, Strother C, Metcalfe R. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol. 2006;27:1113–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brinjikji W, Zhu YQ, Lanzino G, Cloft HJ, Murad MH, Wang Z, et al. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2016;37:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Machi P, Ouared R, Brina O, Bouillot P, Yilmaz H, Vargas MI, et al. Hemodynamics of focal versus global growth of small cerebral aneurysms. Clin Neuroradiol. 2019;29:285–93.

    Article  PubMed  Google Scholar 

  35. Tanoue T, Tateshima S, Villablanca JP, Vinuela F, Tanishita K. Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am J Neuroradiol. 2011;32:1732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dabagh M, Nair P, Gounley J, Frakes D, Gonzalez LF, Randles A. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Neurosurg Focus. 2019;47:E13.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tateshima S, Tanishita K, Omura H, Villablanca JP, Vinuela F. Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal ct angiogram database. AJNR Am J Neuroradiol. 2007;28:622–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Salimi Ashkezari SF, Mut F, Chung BJ, Robertson AM, Cebral JR. Hemodynamic conditions that favor bleb formation in cerebral aneurysms. J Neurointerv Surg. 2021;13(3):231–236.

    Article  Google Scholar 

  39. Cebral JR, Sheridan M, Putman CM. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol. 2010;31:304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Russell JH, Kelson N, Barry M, Pearcy M, Fletcher DF, Winter CD. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation. Neurosurgery. 2013;73:1061–8 (discussion 1068–1069).

    Article  PubMed  Google Scholar 

  41. Sugiyama S, Meng H, Funamoto K, Inoue T, Fujimura M, Nakayama T, et al. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg. 2012;78:462–8.

    Article  PubMed  Google Scholar 

  42. Nordahl ER, Uthamaraj S, Dennis KD, Sejkorová A, Hejčl A, Hron J, et al. Morphological and hemodynamic changes during cerebral aneurysm growth. Brain Sci. 2021;11(4):520.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Suzuki T, Takao H, Rapaka S, Fujimura S, Ioan Nita C, Uchiyama Y, et al. Rupture risk of small unruptured intracranial aneurysms in Japanese adults. Stroke. 2020;51:641–3.

    Article  PubMed  Google Scholar 

  44. Detmer FJ, Chung BJ, Jimenez C, Hamzei-Sichani F, Kallmes D, Putman C, et al. Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location. Neuroradiology. 2019;61:275–84.

    Article  PubMed  Google Scholar 

  45. Chen G, Lu M, Shi Z, **a S, Ren Y, Liu Z, et al. Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a chinese multicenter study. Eur Radiol. 2020;30:5170–82.

    Article  PubMed  Google Scholar 

  46. Kadasi LM, Dent WC, Malek AM. Cerebral aneurysm wall thickness analysis using intraoperative microscopy: effect of size and gender on thin translucent regions. J Neurointerv Surg. 2013;5:201–6.

    Article  PubMed  Google Scholar 

  47. Lee UY, Chung GH, Jung J, Kwak HS. Size-dependent distribution of patient-specific hemodynamic factors in unruptured cerebral aneurysms using computational fluid dynamics. Diagnostics (Basel, Switzerland). 2020. https://doi.org/10.3390/diagnostics10020064.

    Article  PubMed Central  Google Scholar 

  48. Fukuda S, Shimogonya Y, Yonemoto N, Group CAS. Differences in cerebral aneurysm rupture rate according to arterial anatomies depend on the hemodynamic environment. AJNR Am J Neuroradiol. 2019;40:834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varble N, Tutino VM, Yu J, Sonig A, Siddiqui AH, Davies JM, et al. Shared and distinct rupture discriminants of small and large intracranial aneurysms. Stroke. 2018;49:856–64.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chung BJ, Doddasomayajula R, Mut F, Detmer F, Pritz MB, Hamzei-Sichani F, et al. Angioarchitectures and hemodynamic characteristics of posterior communicating artery aneurysms and their association with rupture status. AJNR Am J Neuroradiol. 2017;38:2111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferns SP, Sprengers ME, van Rooij WJ, Rinkel GJ, van Rijn JC, Bipat S, et al. Coiling of intracranial aneurysms: a systematic review on initial occlusion and reopening and retreatment rates. Stroke. 2009;40:e523-529.

    Article  PubMed  Google Scholar 

  52. Damiano RJ, Tutino VM, Paliwal N, Patel TR, Waqas M, Levy EI, et al. Aneurysm characteristics, coil packing, and post-coiling hemodynamics affect long-term treatment outcome. J Neurointerv Surg. 2020;12:706–13.

    Article  PubMed  Google Scholar 

  53. Sugiyama S, Niizuma K, Sato K, Rashad S, Kohama M, Endo H, et al. Blood flow into basilar tip aneurysms: a predictor for recanalization after coil embolization. Stroke. 2016;47:2541–7.

    Article  PubMed  Google Scholar 

  54. Nambu I, Misaki K, Uchiyama N, Mohri M, Suzuki T, Takao H, et al. High pressure in virtual postcoiling model is a predictor of internal carotid artery aneurysm recurrence after coiling. Neurosurgery. 2019;84:607–15.

    Article  PubMed  Google Scholar 

  55. Schonfeld MH, Forkert ND, Fiehler J, Cho YD, Han MH, Kang HS, et al. Hemodynamic differences between recurrent and nonrecurrent intracranial aneurysms: fluid dynamics simulations based on mr angiography. J Neuroimaging. 2019;29:447–53.

    PubMed  Google Scholar 

  56. Tian Z, Liu J, Kumar J, Li W, Zhang Y, Zhang Y, et al. Significant flow velocity reduction at the intracranial aneurysm neck after endovascular treatment leads to favourable angiographic outcome: a prospective study. Stroke Vasc Neurol. 2021. https://doi.org/10.1136/svn-2020-000413.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sheng B, Wu D, Yuan J, Xu S, Li Z, Dong J, et al. Hemodynamic characteristics associated with paraclinoid aneurysm recurrence in patients after embolization. Front Neurol. 2019;10:429.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li C, Wang S, Chen J, Yu H, Zhang Y, Jiang F, et al. Influence of hemodynamics on recanalization of totally occluded intracranial aneurysms: a patient-specific computational fluid dynamic simulation study. J Neurosurg. 2012;117:276–83.

    Article  PubMed  Google Scholar 

  59. Luo B, Yang X, Wang S, Li H, Chen J, Yu H, et al. High shear stress and flow velocity in partially occluded aneurysms prone to recanalization. Stroke. 2011;42:745–53.

    Article  PubMed  Google Scholar 

  60. Patel P, Mousavi Janbeh Sarayi SM, Chen D, Hammond AL, Damiano RJ, Davies JM, et al. Fast virtual coiling algorithm for intracranial aneurysms using pre-shape path planning. Comput Biol Med. 2021;134: 104496.

    Article  PubMed  Google Scholar 

  61. Leng X, Wan H, Li G, Jiang Y, Huang L, Siddiqui AH, et al. Hemodynamic effects of intracranial aneurysms from stent-induced straightening of parent vessels by stent-assisted coiling embolization. Interv Neuroradiol. 2021;27(2):181–90.

    Article  PubMed  PubMed Central  Google Scholar 

  62. **ang J, Damiano RJ, Lin N, Snyder KV, Siddiqui AH, Levy EI, et al. High-fidelity virtual stenting: modeling of flow diverter deployment for hemodynamic characterization of complex intracranial aneurysms. J Neurosurg. 2015;123:832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Uno T, Misaki K, Nambu I, Yoshikawa A, Kamide T, Uchiyama N, et al. Prediction of internal carotid artery aneurysm recurrence by pressure difference at the coil mass surface. Neuroradiology. 2020;63(4):593–602.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Steinman DA, Pereira VM. How patient specific are patient-specific computational models of cerebral aneurysms? An overview of sources of error and variability. Neurosurg Focus. 2019;47:E14.

    Article  PubMed  Google Scholar 

  65. Liang L, Steinman DA, Brina O, Chnafa C, Cancelliere NM, Pereira VM. Towards the clinical utility of cfd for assessment of intracranial aneurysm rupture—a systematic review and novel parameter-ranking tool. J Neurointerv Surg. 2019;11:153–8.

    Article  PubMed  Google Scholar 

  66. Rayz VL, Cohen-Gadol AA. Hemodynamics of cerebral aneurysms: connecting medical imaging and biomechanical analysis. Annu Rev Biomed Eng. 2020;22:231–56.

    Article  CAS  PubMed  Google Scholar 

  67. Seo JH, Eslami P, Caplan J, Tamargo RJ, Mittal R. A highly automated computational method for modeling of intracranial aneurysm hemodynamics. Front Physiol. 2018;9:681.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Key Projects of the National Natural Science Foundation of China (81830057 for L.J.Z.) and the National Key Research and Development Program of China (2017YFC0113400 for L.J.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jiang Zhang.

Ethics declarations

Conflict of interest

U. Joseph Schoepf receives institutional research support and/or personal fees from Bayer, Bracco, Elucid Bioimaging, Guerbet, HeartFlow, and Siemens. Akos Varga-Szemes receives institutional research support and/or personal fees from Elucid Bioimaging and Siemens. The other authors have no conflicts of interest to disclose.

Research involving human participants and/or animals

No.

Informed consent

Not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Shi, Z., Schoepf, U.J. et al. Computational fluid dynamics based hemodynamics in the management of intracranial aneurysms: state-of-the-art. Chin J Acad Radiol 4, 150–159 (2021). https://doi.org/10.1007/s42058-021-00081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42058-021-00081-3

Keywords

Navigation