Log in

Improving reflector antenna parameters via mesh technique: design analysis using CST studio

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Parabolic reflector antennas overcome the challenge of their extensive use in satellite communication, radar, and military applications, despite their bulky nature. A mesh parabolic reflector antenna can be used in 5th Generation networks to provide high-gain directional coverage for point-to-point and point-to-multipoint communication links which also helps in increasing the optical transparency as well as can be used in Massive Multiple Input Multiple Output (MIMO) to improve the coverage and capacity of the network. This paper compares the conventional and meshed antennas for high-performance cabled network antenna reflectors. A mesh topology for cable networks was created using CST by designing two identical paraboloidal-shaped nets, one of which serves as the front net and the other, the rear net. The approach is different from the traditional method that requires constructing a pyramid. Characteristics like Radio Frequency Parameters and Beam Patterns of the reflector surface with triangular facets of the mesh antenna have been studied and evaluated with the conventional parabolic reflector. It is a definitive conclusion that the meshed antenna performs better, as evidenced by the examination of the far-field patterns of both antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, New Jersey

    Google Scholar 

  2. Liu W, Li D-X, Jiang J-P (2013) Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures. Struct Eng Mech 45(3):411–422. https://doi.org/10.12989/sem.2013.45.3.411

    Article  Google Scholar 

  3. Li T, Jiang J, Shen T, Wang Z (2015) Analysis of mechanical properties of wire mesh for mesh reflectors by fractal mechanics. Int J Mech Sci 92:90–97. https://doi.org/10.1016/j.ijmecsci.2014.11.023

    Article  Google Scholar 

  4. Li T, Jiang J, Deng H, Lin Z, Wang Z (2013) Form-finding methods for deployable mesh reflector antennas. Chin J Aeronaut 26(5):1276–1282

    Article  Google Scholar 

  5. Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3(1):115–134

    Article  MathSciNet  Google Scholar 

  6. Guan FL, Yang YL, Zhao ML (2006) Mesh generation and preventing winding of large net-shape deployable antennas for satellite. Chin J Eng Design 13(4):271–276. https://doi.org/10.1007/s10409-014-0029-6

    Article  Google Scholar 

  7. Chandra M, Kumar S, Chattopadhyaya S, Chatterjee S, Kumar P (2021) A review on developments of deployable membrane-based reflector antennas. Adv Space Res 68(9):3749–3764. https://doi.org/10.1016/j.asr.2021.06.051

    Article  Google Scholar 

  8. Shi H, Yang B, Thomson M, Fang H (2012) Automatic surface mesh generation for design of space deployable mesh reflectors. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA (p. 1840). https://doi.org/10.2514/6.2012-1840

  9. Yasin T, Baktur R, Turpin T, Arellano J (2017) Analysis and design of highly transparent meshed patch antenna backed by a solid ground plane. Progress In ElectromagneticsResearchM 56:133–144. https://doi.org/10.2528/PIERM16092708

    Article  Google Scholar 

  10. Tae Woo H et al (2019) Fabrication of mesh patterns using a selective laser-melting process. Appl Sci. https://doi.org/10.3390/app9091922

    Article  Google Scholar 

  11. Sun Z, Duan B, Zhang Y, Yang D, Hu N (2022) Multi-material optimization design for mesh reflector antennas considering space thermal effects. Struct Multidiscip Optim 65(6):1–1. https://doi.org/10.1007/s00158-022-03265-2

    Article  MathSciNet  Google Scholar 

  12. Telagarapu P, Prasanthi AL, Santhi GV, Kiran BR (2011) Design and analysis of parabolic reflector with high gain pencil beam and low side lobes by varying feed. Int J Adv Netw Appl 3:1105–1115

    Google Scholar 

  13. Zhang J, He B, Nie R, Wang G, Zhang L, Yu H, Ma X (2022) High-accuracy design for mesh antennas considering the metallic mesh. Int J Mech Sci 3:107415. https://doi.org/10.1016/j.ijmecsci.2022.107415

    Article  Google Scholar 

  14. Datashvili L, Maghaldadze N, Friemel M, Luo T, da Rocha-Schmidt L, Cappellin C, de Lasson JR, Jørgensen R, Angevain JC, Ihle A, Drioli LS (2018) Large deployable reflectors: enhancing the mesh reflector RF performances. In 3rd International Conference “Advanced Lightweight Structures and Reflector Antennas”

  15. Cappellin C, De Lasson JR, Jørgensen R, Datashvili L, Pauw J, Maghaldadze N, Migliorelli M, Angevain JC (2016) Large mesh reflectors with improved pattern performances. In 37th ESA Antenna Workshop

  16. Morsy MA, Saleh K (2022) Integrated Solar Mesh Dipole Antenna Based Energy Harvesting System. IEEEAccess 10:89083–89090. https://doi.org/10.1109/ACCESS.2022.3201127

    Article  Google Scholar 

  17. Deng H, Li T, Wang Z (2016) Design of geodesic cable net for space deployable mesh reflectors. Acta Astronaut 119:13–21. https://doi.org/10.1016/j.actaastro.2015.10.024

    Article  Google Scholar 

  18. Kumar P, Pathan S, Vincent S, Kumar OP, Yashwanth N, Kumar P, Shetty PR, Ali T (2022) A compact quad-port UWB MIMO antenna with improved isolation using a novel mesh-like decoupling structure and unique DGS. IEEE Trans Circuits Syst II Express Briefs. https://doi.org/10.1109/TCSII.2022.3220542

    Article  Google Scholar 

  19. Martin A, Lafond O, Himdi M, Castel X (2018) Improvement of 60 GHz transparent patch antenna array performance through specific double-sided micrometric mesh metal technology. IEEE Access 7:2256–2262. https://doi.org/10.1109/ACCESS.2018.2886478

    Article  Google Scholar 

  20. Sheth D, Arora H, Joshi S, Munjal BS, Shah DB (2020) Investigation on design methods for cable mesh configuration of deployable space antenna reflector. Int J Space Struct 35(4):126–134. https://doi.org/10.1177/0956059920960305

    Article  Google Scholar 

  21. Zhang S, Du J, Li P (2017) Design of shaped offset cable mesh reflector antennas considering structural flexible property. IET Microwaves Antennas Propag 11(7):1024–1030. https://doi.org/10.1049/iet-map.2016.0977

    Article  Google Scholar 

  22. Srivastava H, Singh A, Rajeev A, Tiwari U (2020) Bandwidth and gain enhancement of rectangular microstrip patch antenna (RMPA) using slotted array technique. Wireless Pers Commun 114:699–709. https://doi.org/10.1007/s11277-020-07388-x

    Article  Google Scholar 

  23. Patel CA, Patel SK (2015) Pyramidal horn antenna design loaded by metamaterial for performance enhancement. In 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO) (pp. 1–4). IEEE. https://doi.org/10.1109/NEMO.2015.7414989

  24. Mahatmanto BPA, Apriono C (2020) Gain performance analysis of a parabolic reflector fed with a rectangular microstrip array antenna. In 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). IEEE .https://doi.org/10.1109/IAICT50021.2020.9172035. pp. 142–145

  25. Tanaka H, Natori MC (2004) Shape control of space antennas consisting of cable networks. Acta Astronaut 55(3–9):519–527. https://doi.org/10.1016/j.actaastro.2004.05.014

    Article  Google Scholar 

  26. Londhe GD, Hendre VS (2023) Interference reduction in hybrid beamforming using 2-D overlapped partially connected subarray structure. Int J Inf Tecnol 15:1407–1415. https://doi.org/10.1007/s41870-023-01168-z

    Article  Google Scholar 

  27. Melkeri VS, Jawali N, Kalnoor G (2021) Design and development of 4 × 4 MIMO antennas for smart 5G devices. Int J Inf Tecnol 13:1693–1698. https://doi.org/10.1007/s41870-021-00688-w

    Article  Google Scholar 

  28. Kaur K, Kumar S, Baliyan A (2020) 5G: a new era of wireless communication. Int J Inf Tecnol 12:619–624. https://doi.org/10.1007/s41870-018-0197-x

    Article  Google Scholar 

  29. Kumari R, Angira M (2023) RF-MEMS capacitive switches: enabling transition towards 5G/B5G applications. Int J Inf Tecnol. https://doi.org/10.1007/s41870-023-01457-7

    Article  Google Scholar 

  30. Singh AK (2019) A wireless networks flexible adoptive modulation and coding technique in advanced 4G LTE. Int J Inf Tecnol 11:55–66. https://doi.org/10.1007/s41870-018-0173-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheen Naz.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, T., Tiwari, U., Naz, S. et al. Improving reflector antenna parameters via mesh technique: design analysis using CST studio. Int. j. inf. tecnol. 16, 471–481 (2024). https://doi.org/10.1007/s41870-023-01618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-023-01618-8

Keywords

Navigation