Log in

Structure–property relations of recrystallized products from magnesium chloride ethanol solution: aiming at recycling magnesium resources from nature

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract  

Large natural magnesium resources, consisting primarily of magnesium chloride hexahydrate, are being wasted and not used efficiently in certain areas of the world. With the shortage of aluminum and iron resources, the transformation of natural magnesium resources into products has become a challenging task. Ethanol, a lower, saturated monohydric aliphatic alcohol known for being green, non-toxicity, and capable of dissolving magnesium chloride hexahydrate, offers a potential solution. This paper focuses on introducing magnesium chloride hexahydrate into ethanol and investigating the recovered samples from the magnesium chloride-ethanol solution by isothermal evaporation at different temperatures, to explore the possibility of extracting magnesium chloride hexahydrate from magnesium salt minerals using ethanol. Results showed that magnesium chloride hexahydrate can be completely recovered at 130 °C. The composition of the recovered sample is mainly magnesium chloride hexahydrate. The good thermal stability is due to high crystallinity and the existence of a strong coordination bond of ethanol in the magnesium chloride crystal structure. All recovered samples have a high current density in ethanol. This research shows that introducing magnesium salt minerals into ethanol to extract magnesium chloride hexahydrate can be a viable option for recycling natural magnesium resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Journal of the Australian ceramic society.

References

  1. Gutierrez, A., Ushak, S., Galleguillos, H., Fernandez, A., Cabeza, L.F., Grágeda, M.: Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Appl. Energy 154, 616–621 (2015)

    Article  CAS  Google Scholar 

  2. Mamani, V., Gutiérrez, A., Fernández, A.I., Ushak, S.: Industrial carnallite-waste for thermochemical energy storage application. Appl. Energy 265, 114738 (2020)

    Article  CAS  Google Scholar 

  3. Svetlana, U., Paula, M., Yana G., Luisa F.C., Mohammed M.F., Mario G.: Compatibility of materials for macroencapsulation of inorganic phase change materials: Experimental corrosion study. Appl. Therm Eng 107, 410–419 (2016)

  4. Ushak, S., Gutierrez, A., Galleguillos, H., Fernandez, A.G., Cabeza, L.F., Grágeda, M.: Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Sol. Energy Mater. Sol. Cells 132, 385–391 (2015)

    Article  CAS  Google Scholar 

  5. Gonzalez, A., Aitken, D., Heitzer, C., Lopez, C., Gonzalez, M.: Reducing mine water use in arid areas through the use of a byproduct road dust suppressant. J. Clean. Prod. 230, 46–54 (2019)

    Article  CAS  Google Scholar 

  6. Zhu, P., Tian, P., Gao, T., Pang, H., Ye, J., Ning, G.: Synthesis of flower-like porous MgO microspheres via a gas-liquid interfacial reaction. Chem. Phys. Lett. 740, 137080 (2020)

    Article  CAS  Google Scholar 

  7. Zhang, Y., Zhang, X.: Thermal properties of a new type of calcium chloride hexahydrate-magnesium chloride hexahydrate/expanded graphite composite phase change material and its application in photovoltaic heat dissipation. Sol. Energy 204, 683–695 (2020)

    Article  CAS  Google Scholar 

  8. Chen, J., Huang, Z.L., Chen, C.L., Li, W.Z., Xu, W.R.: Preparation and growth mechanism of plate-like basic magnesium carbonate by template-mediated/homogeneous precipitation method. J. Cent. South Univ. 25, 729–735 (2018)

    Article  CAS  Google Scholar 

  9. Ma, G., Salahub, S., Montemagno, C., Abraham, S.: Highly active magnesium oxide nanomaterials for the removal of arsenates and phosphates from aqueous solutions. Nano-Structures Nano-Objects 13, 74–81 (2018)

    Article  CAS  Google Scholar 

  10. Li, B.J., Zhang, Y.D., Zhao, Y.B.: A novel method for preparing surface-modified Mg(OH)2 nanocrystallines. Mat. Sci. Eng. A-STRUCT 452, 302–305 (2007)

  11. Honcová, P., Sádovská, G., Pastvová, J., Koštál, P., Seidel, J., Sazama, P., Pilař, R.: Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate. Renew. Energy 168, 1015–1026 (2021)

    Article  Google Scholar 

  12. Eliezer, D., Aghion, E., Froes, F.H.: Magnesium science, technology and applications. Adv. Perform. Mater 5, 201–212 (1998)

  13. Bart, J.C.J., Roovers, W.: Magnesium chloride- ethanol adducts. J. Mater. Sci. 30, 2809–2820 (1995)

    Article  CAS  Google Scholar 

  14. Malizia, F., Fait, A., Cruciani, G.: Crystal structures of Ziegler-Natta catalyst supports. Chem. A Eur. J. 17, 13892–13897 (2011)

    Article  CAS  Google Scholar 

  15. Puhakka, E., Pakkanen, T.T., Pakkanen, T.A.: Theoretical investigations on Ziegler-Natta catalysis: models for the interactions of the TiCl4 catalyst and the MgCl2 support. Surf. Sci. 334, 289–294 (1995)

    Article  CAS  Google Scholar 

  16. Liu, X.Y., Guo, W.Q., Wang, X.E., Guo, Y.T., Zhang, B., Fu, Z.S., Wang, Q., Fan, Z.Q.: TiCl4/MgCl2/MCM-41 Bi-supported Ziegler-Natta catalyst: effects of catalyst composition on ethylene/1-hexene copolymerization. Catalysts 11, 1535 (2021)

    Article  CAS  Google Scholar 

  17. **e, K., Xu, S., Hao, W., Wang, J., Huang, A., Zhang, Y.: The surface effect of the MgCl2 support in Ziegler-Natta catalyst for ethylene polymerization: a computational study. Appl. Surf. Sci. 589, 153002 (2022)

    Article  CAS  Google Scholar 

  18. Sozzani, P., Bracco, S., Comotti, A., Simonutti, R., Camurati, I.: Stoichiometric compounds of magnesium dichloride with ethanol for the supported Ziegler−Natta catalysis: first recognition and multidimensional MAS NMR study. J. Am. Chem. Soc. 125, 12881–12893 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Chang, H.-M., Chen, S.-S., Nguyen, N.C., Chang, W.-S., Sinha Ray, S.: Osmosis membrane bioreactor–microfiltration with magnesium-based draw solute for salinity reduction and phosphorus recovery. Int. Biodeterior. Biodegrad. 124, 169–175 (2017)

    Article  CAS  Google Scholar 

  20. Plyler, E.K.: Infrared spectra of methanol, ethanol, and rz-propanol. J. Res. Natl. Bur. Stand. 48, 281 (1952)

    Article  CAS  Google Scholar 

  21. Horikoshi, K., Hata, K., Kawabata, N., Ikawa, S.-I., Konaka, S.: Vibrational spectra and conformation of polyethylene glycol complexed with calcium and magnesium chlorides. J. Mol. Struct. 239, 33–42 (1990)

    Article  CAS  Google Scholar 

  22. Hisatsune, I.C.: Infrared spectra of some acetone—magnesium adducts. Spectrochim. Acta, Part A 39, 853–862 (1983)

    Article  Google Scholar 

  23. Falk, M., Whalley, E.: Infrared spectra of methanol and deuterated methanols in gas, liquid, and solid phases. J. Chem. Phys. 34, 1554–1568 (1961)

    Article  CAS  Google Scholar 

  24. Huang, Q.Z., Lu, G.M., Wang, J., Yu, J.G.: Mechanism and kinetics of thermal decomposition of MgCl2 × 6H2O. Metall. Mater. Trans. B. 41, 1059–1066 (2010)

    Article  Google Scholar 

  25. Cai, N., **a, S., Li, X., Sun, L., Bartocci, P., Fantozzi, F., Zhang, H., Chen, H., Williams, P.T., Yang, H.: Influence of the ratio of Fe/Al2O3 on waste polypropylene pyrolysis for high value-added products. J. Clean. Prod. 315, 128240 (2021)

    Article  CAS  Google Scholar 

  26. Radnai, T., Kálmán, E., Pollmer, K.: X-ray diffraction study of MgCl2 in methanol. Z. Naturforsch. A 39, 464–470 (1984)

    Article  Google Scholar 

  27. Karuppiah, C., Velmurugan, M., Chen, S.-M., Devasenathipathy, R., Karthik, R., Wang, S.-F.: Electrochemical activation of graphite nanosheets decorated with palladium nanoparticles for high-performance amperometric hydrazine sensor. Electroanalysis 28, 808–816 (2016)

    Article  CAS  Google Scholar 

  28. Barile, C.J., Nuzzo, R.G., Gewirth, A.A.: Exploring salt and solvent effects in chloride-based electrolytes for magnesium electrodeposition and dissolution. J. Phys. Chem. C 119, 13524–13534 (2015)

    Article  CAS  Google Scholar 

  29. Sevov, C.S., Brooner, R.E.M., Chénard, E., Assary, R.S., Moore, J.S., Rodríguez-López, J., Sanford, M.S.: Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries. J. Am. Chem. Soc. 137, 14465–14472 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support from the National Natural Science Foundation of China (Grant Nos. 52074070 and 52204337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gkun Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Jiang, L., Wen, T. et al. Structure–property relations of recrystallized products from magnesium chloride ethanol solution: aiming at recycling magnesium resources from nature. J Aust Ceram Soc 60, 553–561 (2024). https://doi.org/10.1007/s41779-023-00936-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00936-1

Keywords

Navigation