Log in

Formation of silicide/spinel ceramic composites via Al- and Mg-based thermitic combustion synthesis

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Formation of MoSi2–spinel (MgAl2O4) composites with a wide composition range of MoSi2/MgAl2O4 = 1.0–5.0 was studied by thermitic combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS). Two combustion systems conducted contained not only Mo and Si powders, but also different thermite reagents of 7/12 MoO3 + Mg + 1/2 Al and MoO3 + 2 Al in the presence of Al2O3 and MgO, respectively. In agreement with the calculated adiabatic reaction temperatures, measured combustion temperature and flame-front velocity decreased with increasing MoSi2/MgAl2O4 ratio. The XRD analysis indicated that MoSi2 was formed in α and/or β phases and that β-MoSi2 dominated as the combustion temperature above 1550 °C but α-MoSi2 prevailed as the temperature below 1350 °C. Spinel MgAl2O4 was produced through the dissolution of thermite-produced Al2O3 and MgO into pre-added MgO and Al2O3, respectively. The fracture surface morphology of the products exhibited that granular MoSi2 particles were distributed over or embedded partially into the dense and connecting substrate formed by MgAl2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yao, Z., Stiglich, J., Sudarshan, T.S.: Molybdenum silicide based materials and their properties. J Mater Eng Perform 8, 291–304 (1999)

    Article  CAS  Google Scholar 

  2. Petrovic, J.: Toughening strategies for MoSi2-based high temperature structural silicides. Intermetallics 8(9), 1175–1182 (2000)

    Article  CAS  Google Scholar 

  3. Zhang, L., Tong, Z., He, R., **e, C., Bai, X., Yang, Y., Fang, D.: Key issues of MoSi2-UHTC ceramics for ultra high temperature heating element applications: mechanical, electrical, oxidation and thermal shock behaviors. J Alloys Compd 780, 156–163 (2019)

    Article  CAS  Google Scholar 

  4. Wang, L., Fu, Q., Zhao, F.: Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers. Intermetallics 94, 106–113 (2018)

    Article  CAS  Google Scholar 

  5. Salek, M., Bakhshi, S.R., Erfanmanesh, M.: Atmospheric plasma spraying of nanocrystalline SiC particle reinforced MoSi2 prepared by mechanically activated annealing process. J Aust Ceram Soc 55, 1027–1038 (2019)

    Article  CAS  Google Scholar 

  6. Huang, Y., Lin, J., Zhang, H.: Effect of Si3N4 content on microstructures and antioxidant properties of MoSi2/Si3N4 composite coatings on Mo substrate. Ceram Int 41, 13903–13907 (2015)

    Article  CAS  Google Scholar 

  7. Tong, Z., He, R., Cheng, T., Zhang, K., Dai, D., Yang, Y., Fang, D.: High temperature oxidation behavior of ZrB2-SiC added MoSi2 ceramics. Ceram Int 44, 21076–21082 (2018)

    Article  CAS  Google Scholar 

  8. Kang, B.S.: Understanding and improving high-temperature structural properties of metal-silicide intermetallics. West Virginia University, United States (2005)

    Book  Google Scholar 

  9. Liu, J., Wang, Z., Liu, H., Wang, X., Ma, Y.: Effect of Y2O3 do** on the high-temperature properties of magnesia aluminate spinel refractories. J Aust Ceram Soc 56, 389–394 (2020)

    Article  Google Scholar 

  10. Ganesh, I.: A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58, 63–112 (2013)

    Article  CAS  Google Scholar 

  11. Mouyane, M., Jaber, B., Bendjemil, B., Bernard, J., Houivet, D., Noudem, J.G.: Sintering behavior of magnesium aluminate spinel MgAl2O4 synthesized by different methods. Int J Appl Ceram Technol. 16, 1138–1149 (2019)

    Article  CAS  Google Scholar 

  12. Ganesh, I., Srinivas, B., Johnson, R., Saha, B.P., Mahajan, Y.R.: Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders. J Eur Ceram Soc 24, 201–207 (2004)

    Article  CAS  Google Scholar 

  13. Yuan, L., Tian, C., Yan, X., He, X., Liu, Z., Wen, T., **, E., Yu, J.: Preparation of porous MgAl2O4 ceramics by a novel pectin gel-casting process. J Aust Ceram Soc 57, 1049–1055 (2021)

    Article  CAS  Google Scholar 

  14. Shaw, A.P.G.: Thermitic thermodynamics: a computational survey and comprehensive interpretation of over 800 combinations of metals, metalloids, and oxides. CRC Press, Boca Raton, FL (2020)

    Book  Google Scholar 

  15. Borovinskaya, I., Gromov, A., Levashov, E., Maksimov, Y., Mukasyan, A., Rogachev, A.: Concise encyclopedia of self-propagating high-temperature synthesis history, theory, technology, and products. Elsevier, Amsterdam, The Netherlands (2017)

    Google Scholar 

  16. Yeh, C.L., Li, R.F.: Formation of TiB2-Al2O3 and NbB2-Al2O3 composites by combustion synthesis involving thermite reactions. Chem Eng J 147, 405–411 (2009)

    Article  CAS  Google Scholar 

  17. Myint Maung, S.T., Chanadee, T., Niyomwas, S.: Two reactant systems for self-propagating high-temperature synthesis of tungsten silicide. J Aust Ceram Soc 55, 873–882 (2019)

    Article  CAS  Google Scholar 

  18. Omran, J.G., Afarani, M.S., Sharifitabar, M.: Fast synthesis of MgAl2O4–W and MgAl2O4–W–W2B composite powders by self-propagating high-temperature synthesis reactions. Ceram Int 44, 6508–6513 (2018)

    Article  Google Scholar 

  19. Zaki, Z.I., Mostafa, N.Y., Rashad, M.M.: High pressure synthesis of magnesium aluminate composites with MoSi2 and Mo5Si3 in a self-sustaining manner. Ceram Int 38, 5231–5237 (2012)

    Article  CAS  Google Scholar 

  20. Omid, E.K., Naghizadeh, R., Rezaie, H.R.: Synthesis and comparison of MgAl2O4–Ti(C, N) composites using aluminothermic-carbothermal reduction and molten salts routes. J Ceram Process Res 14, 445–447 (2013)

    Google Scholar 

  21. Liang, Y.H., Wang, H.Y., Yang, Y.F., Zhao, R.Y., Jiang, Q.C.: Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu-Ti-B4C system. J Alloys Compd 462, 238–248 (2008)

    Article  Google Scholar 

  22. Binnewies, M., Milke, E.: Thermochemical data of elements and compound. Wiley-VCH Verlag GmbH, Weinheim, New York (2002)

    Book  Google Scholar 

  23. Yeh, C.L., Chen, K.T., Shieh, T.H.: Effects of Fe/Si stoichiometry on formation of Fe3Si/FeSi-Al2O3 composites by aluminothermic combustion synthesis. Metals 11, 1709 (2021)

    Article  CAS  Google Scholar 

  24. Yeh, C.L., Lin, J.Z.: Combustion synthesis of Cr-Al and Cr-Si intermetallics with Al2O3 additions from Cr2O3-Al and Cr2O3-Al-Si reaction systems. Intermetallics 33, 126–133 (2013)

    Article  CAS  Google Scholar 

  25. Wang, L.L., Munir, Z.A., Maximov, Y.M.: Thermite reactions: their utilization in the synthesis and processing of materials. J Mater Sci 28, 3693–3708 (1993)

    Article  CAS  Google Scholar 

  26. Merzhanov, A.G.: Solid flames: discoveries, concepts, and horizons of cognition. Combust Sci Technol 98, 307–336 (1994)

    Article  CAS  Google Scholar 

Download references

Funding

This research was sponsored by the Ministry of Science and Technology of Taiwan under the grant of MOST 110–2221-E-035–042-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Liang Yeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, CL., Chen, M.C. & Shieh, T.H. Formation of silicide/spinel ceramic composites via Al- and Mg-based thermitic combustion synthesis. J Aust Ceram Soc 58, 1275–1282 (2022). https://doi.org/10.1007/s41779-022-00738-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00738-x

Keywords

Navigation