Log in

Recent Advancements in 3-D Structure Determination of Bacteriophages: from Negative Stain to CryoEM

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

For many years, X-ray crystallography has been exclusively used by structural biologists for resolving virus structures and viral proteins at atomic resolution level. However, the discovery of electron microscopy, especially Cryo-electron microscopy (cryoEM), has enabled us to visualise the detailed structural features of biological macromolecules in a more accurate way. In recent years, cryoEM has made sudden progress in its use due to high-end microscopes, improved detectors and modernised software. It is now possible to get near-atomic resolution three-dimensional viral maps using cryoEM. Among viruses, the bacterial viruses or bacteriophages are the most fascinating objects for the structural biologists as they are highly symmetrical particles. The development of cryoEM has also made it easy to determine the structures of these highly symmetrical macromolecules at near-atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:

Similar content being viewed by others

References

  1. Adams MH (1959) Bacteriophages. Wiley (Interscience), New York

    Google Scholar 

  2. William CS (2012) The strange history of phage therapy. Bacteriophage 2(2):130–133. https://doi.org/10.4161/bact.20757

    Article  Google Scholar 

  3. Daniel BG, Jonathan ES, Chad WE, Vincent AF (2013) Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57(6):2743–2750. https://doi.org/10.1128/aac.02526-12

    Article  Google Scholar 

  4. Yen M, Carrins LS, Camilli A (2017) A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 1(8):14187. https://doi.org/10.1038/ncomms14187

    Article  Google Scholar 

  5. Chattopadhyay DJ, Sarkar BL, Ansari MQ, Chakrabarti BK, Roy MK, Ghosh AN, Pal SC (1993) New phage ty** scheme for Vibrio cholerae O1 biotype El Tor strains. J Clin Microbiol 31:1579–1585

    Google Scholar 

  6. Taylor KA, Glaeser RM (1976) Electron microscopy of frozen, hydrated protein crystals. J Ultrastruct Res 55:448–456

    Article  Google Scholar 

  7. Heide HG (1982) Design and operation of cold stages. Ultramicroscopy 10:125–154

    Article  Google Scholar 

  8. McDowall AW, Chang JJ, Freeman R, Lepault J, Walter CA, Dubochet J (1983) Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc 131:1–9

    Article  Google Scholar 

  9. DeRosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134. https://doi.org/10.1038/217130a

    Article  Google Scholar 

  10. Roman IK, Josue GB, Inara A, Javier V, Andris K, Kaspars T, Jose C, Abraham JK (2016) Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat Commun 7:12524

    Article  Google Scholar 

  11. Chen Z, Sun L, Zhang Z, Fokine A, Sanchez VP, Hanein D, Jiang W, Rossmann MG, Rao VB (2017) Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses. Proc Natl Acad Sci USA. 114(39):E8184–E8193. https://doi.org/10.1073/pnas

    Article  Google Scholar 

  12. Rossmann MG (2013) Structure of viruses: a short history. Q Rev Biophys 46:133–180. https://doi.org/10.1017/s0033583513000012

    Article  Google Scholar 

  13. Caspar DL (1956) Structure of bushy stunt virus. Nature 177:475–476

    Article  Google Scholar 

  14. Klug A, Finch JT, Franklin RE (1957) Structure of turnip yellow mosaic virus. Nature 179:683–684. https://doi.org/10.1038/179683b0

    Article  Google Scholar 

  15. Ruska H (1940) Visualization of bacteriophage lysis in the hypermicroscope. Naturwissenschaften 28:45–46

    Article  Google Scholar 

  16. Hall CE (1966) Introduction to electron microscopy, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  17. Brenner S, Horne RW (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34:103–110. https://doi.org/10.1016/0006-3002(59)90237-9

    Article  Google Scholar 

  18. Crowther RA (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos Trans R Soc Lond B Biol 261:221–230. https://doi.org/10.1098/rstb.1971.0054

    Article  Google Scholar 

  19. Rosenthal PB (2015) High symmetry to high resolution in biological electron microscopy: a commentary on Crowther (1971) ‘Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs’. Philos Trans R Soc Lond B Biol Sci 370:1666. https://doi.org/10.1098/rstb.2014.0345

    Article  Google Scholar 

  20. Battisti AJ, Meng G, Winkler DC, Mcginnes LW, Plevka P, Steven AC, Morrison TG, Rossmann MG (2012) Structure and assembly of a paramyxovirus matrix protein. Proc Natl Acad Sci USA 109:13996–14000

    Article  Google Scholar 

  21. Rossmann MG, Battisti AJ, Plevka P (2011) Future prospects, recent advances in electron cryomicroscopy. In: Ludtke SJ, Prasad BVV (eds) Advances in protein chemistry and structural biology, vol 82. Part B. Academic Press, San Diego, pp 101–121

    Google Scholar 

  22. Harrison SC (2010) Virology. Looking inside adenovirus. Science 329:1026–1027

    Article  Google Scholar 

  23. Liu H, ** L, Koh SB, Atanasov I, Schein S, Wu L, Zhou ZH (2010) Atomic structure of human adenovirus by cryoEM reveals interactions among protein networks. Science 329:1038–1043

    Article  Google Scholar 

  24. Reddy VS, Natchiar SK, Stewart PL, Nemerow GR (2010) Crystal structure of human adenovirus at 3.5 Å resolution. Science 329:1071–1075

    Article  Google Scholar 

  25. Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AG, Rayment I, Rossmann MG, Suck D, Tsukihara T (1980) Structure of southern bean mosaic virus at 2.8 Å resolution. Nature 286:33–39

    Article  Google Scholar 

  26. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 Å resolution. Nature 276:368–373

    Article  Google Scholar 

  27. Jiang W, Tang L (2017) Atomic cryoEM structures of viruses. Curr Opin Struct Biol 46:122–129. https://doi.org/10.1016/j.sbi.2017.07.002

    Article  Google Scholar 

  28. Chiu W, Baker ML, Jiang W, Dougherty M, Schmid MF (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13:363–372

    Article  Google Scholar 

  29. Baker ML, Zhang J, Ludtke SJ, Chiu W (2010) CryoEM of macromolecular assemblies at near-atomic resolution. Nat Protoc 5:1697–1708

    Article  Google Scholar 

  30. Hryc CF, Chen DH, Chiu W (2012) Near-atomic-resolution CryoEM for molecular virology. Curr Opin Virol 1(2):110–117. https://doi.org/10.1016/j.coviro.2011.05.019

    Article  Google Scholar 

  31. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151:41–60

    Article  Google Scholar 

  32. Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam sensitive crystals. Ultramicroscopy 16:139–150

    Article  Google Scholar 

  33. Kuhlbrandt W (2014) The resolution revolution. Science 343:1443–1444

    Article  Google Scholar 

  34. Nogales E (2015) Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58(4):677–689. https://doi.org/10.1016/j.molcel.2015.02.019

    Article  Google Scholar 

  35. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637

    Article  Google Scholar 

  36. Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D, Veesler D, Pan J, Harrison SC, Potter CS, Carragher B, Grigorieff N (2012) Movies of ice-embedded particles enhance resolution in electron cryomicroscopy. Structure 20:1823–1828

    Article  Google Scholar 

  37. Xueming L, Paul M, Shawn Z, Christopher RB, Michael BB, Sander G, David AA, Yifan C (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590. https://doi.org/10.1038/nmeth.2472

    Article  Google Scholar 

  38. Hayat MA, Miller SE (1990) Negative staining. In: Hayat MA, Miller SE (eds) Negative staining. McGraw-Hill Publishing Company, New York, pp 36–48

    Google Scholar 

  39. Carlo SD, Harris JR (2011) Negative staining and Cryo-negative staining of Macromolecules and Viruses for TEM. Micron 42(2):117–131. https://doi.org/10.1016/j.micron.2010.06.003

    Article  Google Scholar 

  40. Dubochet J, McOowall AW (1981) Vitrification of pure water for electron microscopy. J Microsc 124:KP3–RP4

    Article  Google Scholar 

  41. Thompson RF, Walker MC, Siebert A, Stephen PM, Neil AR (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15. https://doi.org/10.1016/j.ymeth.2016.02.017

    Article  Google Scholar 

  42. Baker LA, Rubinstein JL (2010) Radiation damage in electron cryomicroscopy. Methods Enzymol 481:371–388

    Article  Google Scholar 

  43. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228. https://doi.org/10.1017/s0033583500004297

    Article  Google Scholar 

  44. Henderson R (2004) Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37(1):3–13. https://doi.org/10.1017/s0033583504003920

    Article  Google Scholar 

  45. Ackermann HW, Furniss AL, Kasatiya SS, Lee JV, Mbiquino A, Newman FS, Takeya K, Viev JF (1983) Morphology of Vibrio cholerae ty** phages. Ann Virol 134E:387–404

    Google Scholar 

  46. Leiman PG, Shneider MM (2012) Contractile tail machines of bacteriophages. Adv Exp Med Biol 726:93–114. https://doi.org/10.1007/978-1-4614-0980-9_5

    Article  Google Scholar 

  47. Leiman PG, Arisaka F, Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG (2010) Morphogenesis of T4 tail and tail fibers. Virol J 3(7):355. https://doi.org/10.1186/1743-422x-7-355

    Article  Google Scholar 

  48. Plisson C, White HE, Auzat I, Zafarani A, Sao-Jose C, Lhuillier S, Tavares P, Orlova EV (2007) Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 26(15):3720–3728

    Article  Google Scholar 

  49. Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106(11):4160–4165

    Article  Google Scholar 

  50. Veesler D, Spinelli S, Mahony J, Lichiere J, Blangy S, Bricogne G, Legrand P, Ortiz-Lombardia M, Campanacci V, Sinderen D, Cambillau C (2012) Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Proc Natl Acad Sci USA 109(23):8954–8958. https://doi.org/10.1073/pnas.1200966109

    Article  Google Scholar 

  51. Sciara G, Bebeacua C, Bron P, Tremblay D, Ortiz-Lombardia M, Lichiere J, Heel MV, Campanacci V, Moineau S, Cambillau C (2010) Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci USA 107(15):6852–6857

    Article  Google Scholar 

  52. Leodevico LI, Terje HOD, Cynthia LM, Holland CR, Zorina B, Robert M, Rossmann MG, Baker TS, Nino LI (1995) DNA packaging intermediates of bacteriophage φX174. Structure 4:353–363. https://doi.org/10.1016/s0969-2126(01)00167-8

    Google Scholar 

  53. Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci USA 101:6003–6008

    Article  Google Scholar 

  54. Aksyuk AA, Leiman PG, Kurochkina LP, Schneider MM, Kostyuchenko V, Mesyanzhinov VV, Rossmann MG (2009) The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 28:821–829

    Article  Google Scholar 

  55. Aksyuk AA, Kurochkina LP, Fokine A, Forouhar F, Mesyanzhinov VV, Tong L, Rossmann MG (2011) Structural conservation of the Myoviridae phage tail sheath protein fold. Structure 19:1885–1894

    Article  Google Scholar 

  56. Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov VV, Rossmann MG (2005) The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 12:810–813

    Article  Google Scholar 

  57. Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, Van MJ, Arisaka F, Mesyanzhinov VV, Rossmann MG (2003) Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol 10:688–693

    Article  Google Scholar 

  58. Aksyuk AA, Leiman PG, Shneider MM, Mesyanzhinov VV, Rossmann MG (2009) The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate. Structure 17:800–808

    Article  Google Scholar 

  59. Berget PB, King J (1978) Isolation and characterization of precursors in T4 baseplate assembly. The complex of gene 10 and gene 11 products. J Mol Biol 124:469–486

    Article  Google Scholar 

  60. Coombs DF, Arisaka F (1994) T4 tail structure and function. In: Karam JD (ed) Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington, D.C., pp 259–281

  61. Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE (2008) Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, mechanism of attachment determined by cryoEM. Structure 9:1399–1406. https://doi.org/10.1016/j.str.2008.05.016

    Article  Google Scholar 

  62. Guoa F, Liua Z, Fanga P, Zhang Q, Wright ET, Wu W, Zhang C, Vago F, Rena Y, Jakana J, Chiu W, Serwer P, Jiang W (2014) Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. PNAS 111:E4606–E4614. https://doi.org/10.1073/pnas.1407020111

    Article  Google Scholar 

  63. Hu B, Margolin W, Molineux IJ, Liu J (2013) The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science. https://doi.org/10.1126/science.1231887

    Google Scholar 

  64. Parent KN, Tang J, Cardone G, Gilcrease EB, Janssen ME, Olson NH, Casjens SR, Baker TS (2014) Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain. Virology 464–465:55–66. https://doi.org/10.1016/j.virol.2014.06.017

    Article  Google Scholar 

  65. Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of Icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63(4):862–922

    Google Scholar 

  66. Dokland T, Lindqvist BH, Fuller SD (1992) Image reconstruction from cryo-electron micrographs reveals the morphopoietic mechanism in the P2–P4 bacteriophage system. EMBO J 11(3):839–846

    Google Scholar 

  67. Butcher SJ, Manole V, Karhu NJ (2012) Lipid-containing viruses: bacteriophage PRD1 assembly. Adv Exp Med Biol 726:365–377. https://doi.org/10.1007/978-1-4614-0980-9_16

    Article  Google Scholar 

  68. Butcher SJ, Bamford DH, Fuller SD (1995) DNA packaging orders the membrane of bacteriophage PRD1. EMBO J 14(24):6078–6086

    Google Scholar 

  69. Butcher SJ, Dokland T, Ojala PM, Bamford DH, Fuller SD (1997) Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J 16(14):4477–4487

    Article  Google Scholar 

  70. Clark CA, Beltrame J, Manning PA (1991) The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 107(1):43

    Article  Google Scholar 

  71. Verma NK, Brandt JM, Verma DJ, Lindberg AA (1991) Molecular characterization of the O-acetyl transferase gene of converting bacteriophage SF6 that adds group antigen 6 to Shigella flexneri. Mol Microbiol 1:71–75

    Article  Google Scholar 

  72. Parent KN, Gilcrease EB, Casjens SR, Baker TS (2012) Structural evolution of the P22-like phages: comparison of Sf6 and P22 procapsid and virion architectures. Virology 427(2):177–188. https://doi.org/10.1016/j.virol.2012.01.040

    Article  Google Scholar 

  73. Tang J, Lander GC, Olia AS, Li R, Casjens S, Prevelige PJ, Cingolani G, Baker TS, Johnson JE (2011) Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in p22. Structure 19(4):496–502. https://doi.org/10.1016/j.str.2011.02.010

    Article  Google Scholar 

  74. Mitra K, Ghosh AN (2007) Characterization of Vibrio cholerae O1 ElTor ty** phage S5. Arch Virol. https://doi.org/10.1007/s00705-007-1021-2

    Google Scholar 

  75. Dutta M, Ghosh AN (2007) Physicochemical Characterization of El Tor Vibriophage S20. Intervirology 50:264–272. https://doi.org/10.1159/000102469

    Article  Google Scholar 

  76. Sen A, Ghosh AN (2017) Visualizing a Vibrio cholerae O1 El Tor ty** bacteriophage belonging to the Myoviridae group and the packaging of its genomic ends inside the phage capsid. J Biomol Struct Dyn 1:1–14. https://doi.org/10.1080/07391102.2017.1368416

    Article  Google Scholar 

  77. Dai W, Hodes A, Hui WH, Gingery M, Miller JF, Zhou ZH (2010) Three-dimensional structure of tropism-switching Bordetella bacteriophage. PNAS 107(9):4347–4352. https://doi.org/10.1073/pnas.0915008107

    Article  Google Scholar 

  78. Rajagopal BS, Reilly BE, Anderson DL (1993) Bacillus subtilis mutants defective in bacteriophage phi 29 head assembly. J Bacteriol 175(8):2357–2362

    Article  Google Scholar 

  79. **ang Y, Morais MC, Battisti AJ, Grimes S, Jardine PJ, Anderson DL, Rossmann MG (2006) Structural changes of bacteriophage 29 upon DNA packaging and release. EMBO J 25:5229–5239

    Article  Google Scholar 

  80. White HE, Sherman MB, Brasilès S, Jacquet E, Seavers P, Tavares P, Orlova EV (2012) Capsid structure and its stability at the late stages of bacteriophage SPP1 assembly. J Virol 86(12):6768–6777. https://doi.org/10.1128/JVI.00412-12

    Article  Google Scholar 

  81. Sassi M, Bebeacua C, Drancourt M, Cambillaua C (2013) The first structure of a mycobacteriophage, the Mycobacterium abscessus subsp. bolletii Phage Araucaria. J Virol 87(14):8099–8109

    Article  Google Scholar 

  82. Novácek J, Siborová M, Benešík M, Pant R, Doškar J, Plevka P (2016) Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. PNAS 113(33):9351–9356. https://doi.org/10.1073/pnas.1605883113

    Article  Google Scholar 

  83. Bebeacua C, Lai L, Vegge CS, Brøndsted L, Heel MV, Veesler D, Cambillauc C (2013) Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of Lactococcal Phage TP901-1. J Virol 87:1061–1068

    Article  Google Scholar 

  84. Bebeacua C, Tremblay D, Farenc C, Chartier MC, Sadovskaya I, Heel MV, Veesler D, Moineau S, Cambillaua C (2013) Structure, adsorption to host, and infection mechanism of virulent Lactococcal Phage p2. J Virol 87(22):12302–12312

    Article  Google Scholar 

  85. Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu X, Rochat RH, Pettinge CH, Piret J, Ludtke SJ, Nagayama K, Schmid MF, King JA, Chiu W (2013) Visualizing virus assembly intermediates inside marine cyanobacteria. Nature. https://doi.org/10.1038/nature12604

    Google Scholar 

  86. Davis JE, Strauss JH, Sinsheimer R (1961) Bacteriophage MS2: another RNA Phage. Science 134:1427

    Google Scholar 

  87. Koning RI, Blanco JG, Akopjana I, Vargas J, Kazaks A, Tars K, Carazo JS, Koster AJ (2016) Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat Commun 26(7):12524. https://doi.org/10.1038/ncomms12524

    Article  Google Scholar 

  88. Raoult D (2015) How the virophage compels the need to readdress the classification of microbes. Virology 477:119–124

    Article  Google Scholar 

  89. Zhang X, Sun S, **ang Y, Wong J, Klose T, Raoult D, Rossmann MG (2012) Structure of Sputnik, a virophage, at 3.5-Å resolution. PNAS 109(45):18431–18436. https://doi.org/10.1073/pnas.1211702109

    Article  Google Scholar 

  90. Bakhshinejad B, Karimi M, Sadeghizadeh M (2014) Bacteriophages and medical oncology: targeted gene therapy of cancer. Med Oncol 31(8):110. https://doi.org/10.1007/s12032-014-0110-9

    Article  Google Scholar 

  91. Sun Z, Omari K, Kotecha A, Stuart DI, Poranen M, Huiskonen J (2017) Double-stranded RNA virus outer shell assembly by bona fide domain-swap**. Nat Commun 8:14814. https://doi.org/10.1038/ncomms14814

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar N. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Ghosh, A.N. Recent Advancements in 3-D Structure Determination of Bacteriophages: from Negative Stain to CryoEM. J Indian Inst Sci 98, 247–260 (2018). https://doi.org/10.1007/s41745-018-0082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-018-0082-4

Keywords

Navigation