Log in

Kernel-Based Fuzzy Intuitionistic Possibilistic Clustering: Analyzing High-Dimensional Gene Expression Cancer Database

  • Original Article
  • Published:
Data-Enabled Discovery and Applications

Abstract

Identifying cohesion of genes for subtypes of diseases in a high-dimensional gene expression database is a highly challenging problem, since the subtypes are based on slight intensity differences between gene expressions. The existed clustering methods are biased with training dataset in identifying the subtypes, and the methods have received irrelevant subtypes. Therefore, this paper introduces unsupervised way of fuzzy clustering to identify the subtypes of genes in a breast cancer database. Here, we have used the dataset which contains 12,634 genes and 288 for finding three available subclasses. In order to cluster the similar intensity genes in the breast cancer dataset, this paper incorporates possibilistic approach, intuitionistic fuzzy sets, and kernel functions with proposed fuzzy clustering techniques. The experimental part of this paper shows that the proposed clustering method how notably identifies the similar gene patterns for common subtypes of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. American Cancer Society, Cancer Facts & Figures, Atlanta, 2019.

  3. K.J. Martin, E. Graner, Y. Li, L.M. Price, B.M. Kritzman, M.V. Fournier, et al., High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood. Proc. Natl. Acad. Sci. 98(5), 2646–2651 (2001). https://doi.org/10.1073/pnas.041622398

    Article  Google Scholar 

  4. B.C. Patel, G.R. Sinha, An adaptive K-means clustering algorithm for breast image segmentation. Int. J. Comput. Appl. 10(4), 35–38 (2010). https://doi.org/10.5120/1467-1982

    Article  Google Scholar 

  5. Sheshadri, H. S. and Kandaswamy, A, Computer aided decision system for early detection of breast cancer. Indian J. Med. Res. 124(2), 149–154 (2006).

  6. Agrawal, U. et al., Combining clustering and classification ensembles: A novel pipeline to identify breast cancer profiles. Artificial Intelligence in Medicine. 97, 27–37 (2019).

  7. V. Chaurasia, S. Pal, B. Tiwari, Prediction of benign and malignant breast cancer using data mining techniques. J Algorith Comput Technol 12(2), 119–126 (2018). https://doi.org/10.1177/1748301818756225

    Article  Google Scholar 

  8. C. Kothari, G. Ouellette, Y. Labrie, S. Jacob, C. Diorio, F. Durocher, Identification of a gene signature for different stages of breast cancer development that could be used for early diagnosis and specific therapy. Oncotarget 9(100) (2018). https://doi.org/10.18632/oncotarget.26448

  9. A. Sanjay, H.V. Nair, S. Murali, K.S. Krishnaveni, in 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). A data mining model to predict breast cancer using improved feature selection method on real time data (2018), pp. 2437–2440. https://doi.org/10.1109/ICACCI.2018.8554450

    Chapter  Google Scholar 

  10. Doostparast Torshizi,A and Fazel Zarandi, M. H, Alpha-plane based automatic general type-2 fuzzy clustering based on simulated annealing meta-heuristic algorithm for analyzing gene expression data. Comput. Biol. Med., 64, 347–359 (2015). 

  11. Lance Parsons et al, Subspace Clustering for High Dimensional Data: A Review. ACM SIGKDD Explorations Newsletter. 6(1), (2004).

  12. S. Aalaei, H. Shahraki, A. Rowhanimanesh, S. Eslami, Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets. Iran. J Basic Med. Sci. 19(5), 7 (2016)

  13. E. Aličković, A. Subasi, Breast cancer diagnosis using GA feature selection and rotation Forest. Neural Comput. & Applic. 28(4), 753–763 (2017). https://doi.org/10.1007/s00521-015-2103-9

    Article  Google Scholar 

  14. Devi, R. D. H., & Devi, D. M. I, Outlier detection algorithm combined with decision tree classifier for early diagnosis of breast cancer, International Journal of Advanced Engineering Technology, VII/Issue I, pp. 93-98 (2016).

  15. P. Velusamy, P. Karantharaj, S. Prabakar, New scheme for breast cancer detection and staging using ant colony algorithm. Int. J. Biomed. Eng. Technol. 27(1/2), 86 (2018). https://doi.org/10.1504/IJBET.2018.093088

    Article  Google Scholar 

  16. H. Zamani, M.-H. Nadimi-Shahraki, Swarm intelligence approach for breast cancer diagnosis. Int. J. Comput. Appl. 151(1), 40–44 (2016). https://doi.org/10.5120/ijca2016911667

    Article  Google Scholar 

  17. Z. Yu, P. Luo, J. You, H.-S. Wong, H. Leung, S. Wu, G. Han, Incremental semi-supervised clustering ensemble for high dimensional data clustering. IEEE Trans. Knowl. Data Eng. 28(3), 701–714 (2016). https://doi.org/10.1109/TKDE.2015.2499200

    Article  Google Scholar 

  18. L. Zheng, T. Li, in 2011 IEEE 11th International Conference on Data Mining. Semi-supervised hierarchical clustering (2011), pp. 982–991. https://doi.org/10.1109/ICDM.2011.130

    Chapter  Google Scholar 

  19. S.M. Bohte, H. La Poutre, J.N. Kok, Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2), 426–435 (2002). https://doi.org/10.1109/72.991428

    Article  Google Scholar 

  20. E. Elhamifar, R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013). https://doi.org/10.1109/TPAMI.2013.57

    Article  Google Scholar 

  21. A. McCallum et al., Efficient clustering of high-dimensional data sets with application to reference matching (KDD'00 : Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000), pp. 169–178

  22. H.M. Moftah, A.T. Azar, E.T. Al-Shammari, N.I. Ghali, A.E. Hassanien, M. Shoman, Adaptive K-means clustering algorithm for MR breast image segmentation. Neural Comput. & Applic. 24(7–8), 1917–1928 (2014). https://doi.org/10.1007/s00521-013-1437-4

    Article  Google Scholar 

  23. N. Nidheesh, K.A. Abdul Nazeer, P.M. Ameer, An enhanced deterministic K-means clustering algorithm for cancer subtype prediction from gene expression data. Comput. Biol. Med. 91, 213–221 (2017). https://doi.org/10.1016/j.compbiomed.2017.10.014

    Article  Google Scholar 

  24. Z. Rustam, S. Hartini, Classification of breast cancer using fast fuzzy clustering based on kernel. IOP Conf. Ser. Mat. Sci. Eng. 546, 052067 (2019). https://doi.org/10.1088/1757-899X/546/5/052067

  25. D. Graves, W. Pedrycz, Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study. Fuzzy Sets. Syst. 161(4), 522–543 (2010). https://doi.org/10.1016/j.fss.2009.10.021

    Article  MathSciNet  Google Scholar 

  26. H. Fritz, L.A. García-Escudero, A. Mayo-Iscar, Robust constrained fuzzy clustering. Inf. Sci. 245, 38–52 (2013). https://doi.org/10.1016/j.ins.2013.03.056

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Abdullah et al., Hybrid multistage fuzzy clustering system for medical data classification (2018 International Conference on Computing Sciences and Engineering (ICCSE), Kuwait City, 2018), pp. 1–6. https://doi.org/10.1109/ICCSE1.2018.8374213

    Book  Google Scholar 

  28. L. Bai, J. Liang, Y. Guo, An ensemble clusterer of multiple fuzzy K-means clusterings to recognize arbitrarily shaped clusters. IEEE Transactions on Fuzzy Systems (2018), pp. 1–1. https://doi.org/10.1109/TFUZZ.2018.2835774

  29. R.J. Kuo, T.C. Lin, F.E. Zulvia, C.Y. Tsai, A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Appl. Soft. Comput. 67, 299–308 (2018). https://doi.org/10.1016/j.asoc.2018.02.039

    Article  Google Scholar 

  30. L. Sun, J. Xu, J. Yin, An effective fuzzy kernel clustering analysis approach for gene expression data. Biomed. Mater. Eng. 26(s1), S1863–S1869 (2015). https://doi.org/10.3233/BME-151489

    Article  Google Scholar 

  31. Y. Hu, C. Zuo, F. Qu, W. Shi, Unsupervised possibilistic clustering based on kernel methods. Phys. Procedia 25, 1084–1090 (2012). https://doi.org/10.1016/j.phpro.2012.03.203

    Article  Google Scholar 

  32. U. Maulika, A. Mukhopadhyay, Simulated annealing based automatic fuzzy clustering combined with ann classification for analyzing microarray data, vol. 37 (Elsevier, 2010), pp. 1369–1380. https://doi.org/10.1016/j.cor.2009.02.025

  33. H. **e, J. Li, Q. Zhang, Y. Wang, Comparison among dimensionality reduction techniques based on random projection for cancer classification. Comput. Biol. Chem. 65, 165–172 (2016). https://doi.org/10.1016/j.compbiolchem.2016.09.010

    Article  Google Scholar 

  34. P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

Download references

Funding

This work was financially supported by DST India and MOST Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan S R.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R, K.S., Kashyap, E. & Last, M. Kernel-Based Fuzzy Intuitionistic Possibilistic Clustering: Analyzing High-Dimensional Gene Expression Cancer Database. Data-Enabled Discov. Appl. 4, 4 (2020). https://doi.org/10.1007/s41688-020-00039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41688-020-00039-x

Keywords

Navigation